คำถามติดแท็ก poisson-distribution

การกระจายแบบไม่ต่อเนื่องที่กำหนดไว้ในจำนวนเต็มไม่เป็นลบที่มีคุณสมบัติที่ค่าเฉลี่ยเท่ากับความแปรปรวน

3
ตัวอย่าง: การถดถอย LASSO โดยใช้ glmnet สำหรับผลลัพธ์ไบนารี
ฉันเริ่มตะลุยกับการใช้งานglmnetกับการถดถอยแบบ LASSOซึ่งผลลัพธ์ของความสนใจของฉันนั้นเป็นแบบขั้วคู่ ฉันได้สร้างกรอบข้อมูลจำลองขนาดเล็กด้านล่าง: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45, 0.99, 0.84, 0.85, 0.67, 0.91, 0.29, 0.88) m_edu <- c(0, 1, 1, 2, 2, 3, 2, 0, 1) p_edu <- c(0, …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

4
ความสัมพันธ์ระหว่างปัวส์ซองกับการแจกแจงแบบเลขชี้กำลัง
เวลาที่รอสำหรับการแจกแจงปัวซองคือการแจกแจงแบบเอ็กซ์โพเนนเชียลพร้อมพารามิเตอร์แลมบ์ดา แต่ฉันไม่เข้าใจ ปัวซองเป็นตัวอย่างจำนวนของการมาถึงต่อหน่วยเวลา สิ่งนี้เกี่ยวข้องกับการแจกแจงเอ็กซ์โปเนนเชียลอย่างไร ช่วยบอกว่าความน่าจะเป็นของการมาถึง k ในหน่วยของเวลาคือ P (k) (แบบจำลองโดยปัวซอง) และความน่าจะเป็นที่ k + 1 คือ P (k + 1), แบบจำลองการแจกแจงแบบเอ็กซ์โพเนนเชียล

1
วิธีการตีความสัมประสิทธิ์ในการถดถอยปัวซอง?
ฉันจะตีความผลกระทบหลัก (ค่าสัมประสิทธิ์สำหรับปัจจัยจำลอง) ในการถดถอยปัวซองได้อย่างไร สมมติตัวอย่างต่อไปนี้: treatment <- factor(rep(c(1, 2), c(43, 41)), levels = c(1, 2), labels = c("placebo", "treated")) improved <- factor(rep(c(1, 2, 3, 1, 2, 3), c(29, 7, 7, 13, 7, 21)), levels = c(1, 2, 3), labels = c("none", "some", "marked")) numberofdrugs <- rpois(84, 10) + 1 healthvalue <- …

1
ทำไมการแปลงสแควร์รูทจึงแนะนำสำหรับการนับข้อมูล
มันมักจะแนะนำให้ใช้รากที่สองเมื่อคุณมีข้อมูลนับ (สำหรับตัวอย่างบางส่วนใน CV ดู @ คำตอบ HarveyMotulsky ของที่นี่หรือคำตอบของ @ whuber ที่นี่ .) ในทางกลับกันเมื่อการปรับรูปแบบเชิงเส้นทั่วไปกับตัวแปรตอบสนองกระจายเป็น Poisson บันทึกคือการเชื่อมโยงที่เป็นที่ยอมรับ นี่เหมือนกับการแปลงบันทึกข้อมูลการตอบกลับของคุณ (แม้ว่าจะแม่นยำกว่านั้นคือทำการแปลงบันทึกของพารามิเตอร์ที่ควบคุมการกระจายการตอบสนอง) ดังนั้นจึงมีความตึงเครียดระหว่างสองสิ่งนี้ λλ\lambda คุณจะปรับความคลาดเคลื่อน (ชัดเจน) นี้อย่างไร ทำไมสแควร์รูทถึงดีกว่าลอการิทึม

2
การถดถอยปัวซองเพื่อประเมินความเสี่ยงสัมพัทธ์สำหรับผลลัพธ์ไบนารี
สรุปโดยย่อ เหตุใดจึงเป็นเรื่องธรรมดามากขึ้นที่จะใช้การถดถอยโลจิสติก (ด้วยอัตราต่อรอง) ในการศึกษาหมู่ที่มีผลลัพธ์เป็นเลขฐานสองเมื่อเทียบกับการถดถอยแบบปัวซอง (โดยมีความเสี่ยงสัมพัทธ์) พื้นหลัง ในระดับปริญญาตรีและระดับบัณฑิตศึกษาสถิติและหลักสูตรระบาดวิทยาในประสบการณ์ของฉันสอนโดยทั่วไปว่าการถดถอยโลจิสติกควรใช้สำหรับการสร้างแบบจำลองข้อมูลที่มีผลลัพธ์แบบไบนารีโดยมีการประเมินความเสี่ยงที่รายงานว่าเป็นอัตราต่อรอง อย่างไรก็ตามการถดถอยของปัวซอง (และที่เกี่ยวข้อง: กึ่งปัวซอง, ทวินามลบ ฯลฯ ) ยังสามารถใช้ในการสร้างแบบจำลองข้อมูลด้วยผลลัพธ์ไบนารีและด้วยวิธีการที่เหมาะสม (เช่นตัวประมาณความแปรปรวนแซนวิชที่แข็งแกร่ง) ให้การประเมินความเสี่ยง เช่น, Greenland S. , การประมาณแบบจำลองตามความเสี่ยงสัมพัทธ์และมาตรการทางระบาดวิทยาอื่น ๆ ในการศึกษาผลลัพธ์ทั่วไปและในกรณีศึกษาการควบคุม , Am J Epidemiol 2004 15 ส.ค. ; 160 (4): 301-5 Zou G. , วิธีการถดถอยแบบปัวซองเพื่อแก้ไขการศึกษาในอนาคตด้วยข้อมูลไบนารี , Am J Epidemiol 2004 1 เม.ย. ; 159 (7): 702-6 Zou …

8
ฉันจะทดสอบได้อย่างไรว่าตัวอย่างที่ได้รับมาจากการแจกแจงปัวซอง
ฉันรู้ว่าการทดสอบภาวะปกติ แต่ฉันจะทดสอบ "Poisson-ness" ได้อย่างไร? ฉันมีตัวอย่างจำนวนเต็ม 1000 จำนวนที่ไม่เป็นลบซึ่งฉันสงสัยว่านำมาจากการแจกแจงแบบปัวซองและฉันต้องการทดสอบสิ่งนั้น

3
เหตุใดจึงมีความแตกต่างระหว่างการคำนวณช่วงความเชื่อมั่นแบบโลจิสติก 95% ด้วยตนเองและการใช้ฟังก์ชัน confint () ใน R
เรียนคุณทุกคน - ฉันสังเกตเห็นบางสิ่งแปลก ๆ ที่ไม่สามารถอธิบายได้ไหม โดยสรุป: แนวทางแบบแมนนวลเพื่อคำนวณช่วงความมั่นใจในโมเดลการถดถอยโลจิสติกและฟังก์ชัน R confint()ให้ผลลัพธ์ที่แตกต่างกัน ฉันเคยผ่านการถดถอยโลจิสติกประยุกต์ของ Hosmer & Lemeshow แล้ว (ฉบับที่ 2) ในบทที่ 3 มีตัวอย่างของการคำนวณอัตราส่วนอัตราต่อรองและช่วงความมั่นใจ 95% ด้วย R ฉันสามารถสร้างโมเดลได้อย่างง่ายดาย: Call: glm(formula = dataset$CHD ~ as.factor(dataset$dich.age), family = "binomial") Deviance Residuals: Min 1Q Median 3Q Max -1.734 -0.847 -0.847 0.709 1.549 Coefficients: Estimate Std. Error z value …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

2
มีตัวแปรแบบกล่องสำหรับข้อมูลแบบกระจายของปัวซองหรือไม่
ฉันต้องการที่จะรู้ว่ามีตัวแปร boxplot ปรับให้เข้ากับข้อมูลการกระจายปัวซอง (หรือการกระจายอื่น ๆ ) ด้วยการแจกแจงแบบเกาส์หนวดที่ L = Q1 - 1.5 IQR และ U = Q3 + 1.5 IQR บ็อกซ์ล็อตมีคุณสมบัติที่จะมีค่าผิดปกติต่ำมาก (คะแนนต่ำกว่า L) เนื่องจากมีค่าผิดปกติสูง ) หากข้อมูลที่มีการกระจาย Poisson แต่นี้ไม่ได้ถืออีกต่อไปเพราะของเบ้เชิงบวกที่เราได้รับPr (X <L) <Pr (X> U) มีวิธีอื่นในการวางเคราเช่นนี้เพื่อให้พอดีกับการแจกแจงปัวซองหรือไม่?

4
ฉันจะพอดีกับโมเดลหลายระดับสำหรับผลลัพธ์ปัวส์ซองที่กระจายอยู่ทั่วได้อย่างไร
ฉันต้องการติดตั้ง GLMM หลายระดับพร้อมการกระจายแบบปัวซอง (ด้วยการกระจายตัวมากเกินไป) โดยใช้ R ในขณะนี้ฉันกำลังใช้lme4แต่ฉันสังเกตเห็นว่าเมื่อเร็ว ๆ นี้quasipoissonครอบครัวถูกลบออก ฉันเคยเห็นที่อื่นว่าคุณสามารถสร้างแบบจำลองการกระจายตัวเกินสำหรับการแจกแจงทวินามโดยการเพิ่มการสกัดกั้นแบบสุ่มด้วยระดับหนึ่งต่อการสังเกต สิ่งนี้ใช้ได้กับการแจกแจงแบบปัวซองด้วยหรือไม่ มีวิธีที่ดีกว่าที่จะทำหรือไม่ มีแพ็คเกจอื่น ๆ ที่คุณอยากแนะนำอีกไหม?

4
วิธีการคำนวณระดับความเชื่อมั่นสำหรับการแจกแจงปัวซอง?
ต้องการทราบว่าฉันมั่นใจในของฉันได้อย่างไร ใครรู้วิธีตั้งค่าระดับความเชื่อมั่นสูงและต่ำสำหรับการกระจายปัวซอง?λλ\lambda การสังเกต ( ) = 88nnn ค่าเฉลี่ยตัวอย่าง ( ) = 47.18182λλ\lambda ความมั่นใจ 95% จะเป็นอย่างไร

1
ฟังก์ชันการแจกแจงทวินามเหนือด้านบน / ด้านล่างของฟังก์ชันการแจกแจงปัวซองคืออะไร
ให้แสดงถึงฟังก์ชันการแจกแจงทวินาม (DF) พร้อมพารามิเตอร์และประเมินที่ : และปล่อยให้แสดง Poisson DF พร้อมพารามิเตอร์a \ in \ mathbb R ^ +ประเมินที่r \ in \ {0,1,2, \ ldots \} : \ start {equation} F (a , r) = e ^ {- a} \ sum_ {i = 0} ^ r \ frac {a ^ i} {i!} \ end …

4
ตรวจสอบว่าสองตัวอย่างปัวซองมีค่าเฉลี่ยเดียวกัน
นี่เป็นคำถามเบื้องต้น แต่ฉันไม่สามารถหาคำตอบได้ ฉันมีการวัดสองรายการ: เหตุการณ์ n1 ในเวลา t1 และเหตุการณ์ n2 ในเวลา t2 ทั้งคู่ผลิต (พูด) โดยกระบวนการปัวซงด้วยค่าแลมบ์ดาที่แตกต่างกัน อันนี้มาจากบทความข่าวซึ่งอ้างว่าตั้งแต่ที่ทั้งสองแตกต่างกัน แต่ฉันไม่แน่ใจว่าการอ้างสิทธิ์นั้นถูกต้อง สมมติว่าช่วงเวลาไม่ได้ถูกเลือกอย่างมีเจตนาร้าย (เพื่อเพิ่มเหตุการณ์ให้ใหญ่ที่สุดอย่างใดอย่างหนึ่ง)n1/ t1≠ n2/ t2n1/เสื้อ1≠n2/เสื้อ2n_1/t_1\neq n_2/t_2 ฉันสามารถเพียงแค่ทำT -test หรือจะว่าไม่เหมาะสม? จำนวนเหตุการณ์น้อยเกินไปสำหรับฉันที่จะโทรหาการแจกแจงแบบปกติโดยประมาณ

1
Cox Regression มีการแจกแจงแบบปัวซองหรือไม่?
ทีมเล็ก ๆ ของเรากำลังพูดคุยกันและติดอยู่ ไม่มีใครรู้ว่าการถดถอยของ Cox นั้นมีการแจกแจงแบบปัวซองหรือไม่ เรามีการถกเถียงกันว่าบางทีการถดถอยของค็อกซ์ที่มีความเสี่ยงเวลาคงที่จะมีความคล้ายคลึงกันกับการถดถอยปัวซองด้วยความแปรปรวนที่แข็งแกร่ง ความคิดใด ๆ

5
วิธีจัดการกับข้อมูลแบบลำดับชั้น / ซ้อนในการเรียนรู้ของเครื่อง
ฉันจะอธิบายปัญหาด้วยตัวอย่าง สมมติว่าคุณต้องการที่จะทำนายรายได้ของแต่ละบุคคลที่มีคุณลักษณะบางอย่าง: {อายุ, เพศ, ประเทศ, ภูมิภาค, เมือง} คุณมีชุดข้อมูลการฝึกอบรมเช่นนั้น train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID Age Gender Income 1 1 1 1 23 M 31 2 1 1 1 48 F 42 3 …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

3
การกระจายปัวซองแตกต่างจากการแจกแจงแบบปกติอย่างไร
ฉันสร้างเวกเตอร์ที่มีการแจกแจงปัวซงดังนี้: x = rpois(1000,10) ถ้าฉันใช้ฮิสโตแกรมhist(x)การแจกแจงนั้นดูเหมือนการแจกแจงปกติแบบรูประฆังที่คุ้นเคย อย่างไรก็ตามการทดสอบ Kolmogorov-Smirnoff ที่ใช้ks.test(x, 'pnorm',10,3)บอกว่าการกระจายนั้นแตกต่างจากการแจกแจงแบบปกติอย่างมีนัยสำคัญเนื่องจากมีpค่าน้อยมาก ดังนั้นคำถามของฉันคือ: การแจกแจงปัวซองนั้นแตกต่างจากการแจกแจงแบบปกติอย่างไรเมื่อฮิสโตแกรมมีลักษณะคล้ายกับการแจกแจงแบบปกติ

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.