3
Cholesky กับ eigendecomposition สำหรับการวาดตัวอย่างจากการแจกแจงปกติหลายตัวแปร
ผมอยากจะวาดตัวอย่าง ) วิกิพีเดียแสดงให้เห็นว่าจะใช้CholeskyหรือEigendecompositionคือ Σ = D 1 D T 1 หรือ Σ = Q Λ Q Tx∼N(0,Σ)x∼N(0,Σ)\mathbf{x} \sim N\left(\mathbf{0}, \mathbf{\Sigma} \right)Σ=D1DT1Σ=D1D1T \mathbf{\Sigma} = \mathbf{D}_1\mathbf{D}_1^T Σ=QΛQTΣ=QΛQT \mathbf{\Sigma} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T และด้วยเหตุนี้ตัวอย่างสามารถวาดผ่าน: หรือ x = Q √x=D1vx=D1v \mathbf{x} = \mathbf{D}_1 \mathbf{v} โดยที่ v∼N(0,I)x=QΛ−−√vx=QΛv \mathbf{x} = \mathbf{Q}\sqrt{\mathbf{\Lambda}} \mathbf{v} v∼N(0,I)v∼N(0,I) \mathbf{v} \sim N\left(\mathbf{0}, \mathbf{I} \right) …