การเดินแบบสุ่มและหมายถึงเวลากดปุ่มในกราฟที่ไม่ได้บอกทิศทางอย่างง่าย
ปล่อยให้เป็นกราฟที่ไม่ระบุทิศทางอย่างง่ายบนจุดยอดและขอบG=(V,E)G=(V,E)G=(V,E)nnnmmm ฉันพยายามที่จะกำหนดเวลาการทำงานที่คาดหวังของอัลกอริทึมของวิลสันสำหรับการสร้างต้นไม้ทอดแบบสุ่มของGที่นั่นมันแสดงให้เห็นว่าเป็นโดยที่คือเวลากดปุ่มหมายถึง :ที่:GGGO(τ)O(τ)O(\tau)ττ\tauτ=∑v∈Vπ(v)⋅H(u,v),τ=∑v∈Vπ(v)⋅H(u,v),\tau = \sum_{v \in V} \pi(v) \cdot H(u, v), ππ\piคือการแจกแจงแบบคงที่ ,π(v)=d(v)2mπ(v)=d(v)2m\pi(v)=\frac{d(v)}{2m} uuuเป็นจุดสุดยอดโดยพลการและ H(u,v)H(u,v)H(u,v)เป็นเวลาตี (AKA เวลาในการเข้าถึง ) คือจำนวนที่คาดหวังของขั้นตอนก่อนที่จะจุดสุดยอดมีการเข้าชมเริ่มต้นจากจุดสุดยอดยูvvvuuu ขอบเขตบนทั่วไปสำหรับเวลากดปุ่มหมายถึงอะไร และกราฟกรณีที่เลวร้ายที่สุดคือที่เพิ่มเวลาเฉลี่ยในการกดปุ่มให้สูงที่สุดคืออะไร?GGG เพื่อให้คำถามของฉันชัดเจนฉันไม่ต้องการการคำนวณหรือการพิสูจน์อย่างละเอียด (แม้ว่าพวกเขาอาจจะมีประโยชน์กับคนอื่นที่พบคำถามนี้ในอนาคต) สำหรับฉันเป็นการส่วนตัวการอ้างอิงก็เพียงพอแล้ว กระดาษกล่าวถึงอัลกอริทึมอื่นโดย Broderที่ทำงานในเวลาที่คาดว่าจะครอบคลุม (ครั้งแรกเมื่อมีการเยี่ยมชมจุดยอดทั้งหมด) จากนั้นมีการกล่าวว่าหมายถึงเวลาในการกดปุ่มนั้นน้อยกว่าเวลาที่ครอบคลุม อย่างไรก็ตามมันให้ขอบเขตของซีมโทติคสำหรับกราฟส่วนใหญ่ (กล่าวคือกราฟขยาย ) เพื่อเปรียบเทียบกับโดย Broder สำหรับกราฟส่วนใหญ่ (ที่มีคำจำกัดความครอบคลุมมากที่สุด )Θ(n)Θ(n)\Theta(n)Θ(nlogn)Θ(nlogn)\Theta(n \log n) มันไม่ให้ตัวอย่างของกราฟที่เวลาเฉลี่ยที่ตีเป็นหนึ่งและเวลาปก3) ในขณะที่เรื่องนี้เป็นที่รู้กันว่าเป็นกรณีที่เลวร้ายที่สุดสำหรับหลังเขาไม่ได้พูดอะไรเกี่ยวกับกรณีที่เลวร้ายที่สุดของอดีต นี้จะหมายความว่ากรณีที่เลวร้ายที่สุดสำหรับขั้นตอนวิธีการของวิลสันอาจตกอยู่ที่ใดก็ได้ระหว่างและ3)Θ(n2)Θ(n2)\Theta(n^2)Θ(n3)Θ(n3)\Theta(n^3)O(n2)O(n2)O(n^2)O(n3)O(n3)O(n^3) มีการนำไปใช้งานของอัลกอรึทึมของ Wilson สองอย่างที่ฉันทราบ หนึ่งคือในBoost ห้องสมุดกราฟในขณะที่สองอยู่ในกราฟเครื่องมือ เอกสารของอดีตไม่ได้กล่าวถึงเวลาทำงานในขณะที่รัฐหลัง: เวลาทำงานปกติสำหรับกราฟสุ่มคือn)O(nlogn)O(nlogn)O(n \log n) …