คำถามติดแท็ก subset-sum

3
ชุดย่อยรวมกับผลิตภัณฑ์ชุดชั้นใน (ความแข็งเทียบกับความแข็ง NP อ่อน)
ฉันหวังว่าบางคนอาจจะสามารถอธิบายให้ฉันเข้าใจได้ว่าทำไมปัญหาผลิตภัณฑ์ชุดย่อยนั้นเป็นปัญหาที่รุนแรงมากในขณะที่ปัญหาส่วนย่อยของชุดย่อยนั้นค่อนข้างอ่อนแรง กลุ่มย่อยซำ: ให้และTไม่มีอยู่เซตX 'ดังกล่าวว่าΣ ฉัน∈ X ' x ฉัน = TX={x1,...,xn}X={x1,...,xn}X = \{x_1,...,x_n\}TTTX′X′X'∑i∈X′xi=T∑i∈X′xi=T\sum_{i\in X'}x_i = T กลุ่มย่อยสินค้า: ให้และTไม่มีอยู่เซตX 'ดังกล่าวว่าΠ ฉัน∈ X ' x ฉัน = TX={x1,...,xn}X={x1,...,xn}X = \{x_1,...,x_n\}TTTX′X′X'∏i∈X′xi=T∏i∈X′xi=T\prod_{i\in X'}x_i = T ฉันคิดเสมอว่าปัญหาทั้งสองนั้นเทียบเท่ากัน - ตัวอย่างของ SS สามารถเปลี่ยนเป็นตัวอย่างของ SP ผ่านการยกกำลังและตัวอย่างของ SP เป็น SS ผ่านลอการิทึม สิ่งนี้ทำให้ฉันสรุปได้ว่าพวกเขาทั้งคู่อยู่ในระดับเดียวกันของ NP-hard - นั่นคือพวกเขาทั้งคู่มีความอ่อนแอน้อย นอกจากนี้ปรากฏว่าการเกิดซ้ำเดียวกันสามารถใช้เพื่อแก้ปัญหาทั้งสองโดยใช้การเขียนโปรแกรมแบบไดนามิกที่มีการเปลี่ยนแปลงเล็กน้อยมาก (แทนที่การลบใน SS ด้วยการหารใน …

1
การตรวจจับความสัมพันธ์จำนวนเต็มสำหรับชุด Sum หรือ NPP
มีวิธีในการเข้ารหัสอินสแตนซ์ของผลรวมย่อยหรือปัญหาการแบ่งพาร์ติชันเพื่อให้การแก้ปัญหา (เล็ก) ของความสัมพันธ์จำนวนเต็มให้คำตอบหรือไม่? ถ้าไม่อย่างแน่นอนแล้วในแง่ความน่าจะเป็นบางอย่าง? ฉันรู้ว่า LLL (และอาจ PSLQ) ได้ถูกนำมาใช้กับความสำเร็จพอสมควรในการแก้ปัญหาระบบย่อยซำใน 'ความหนาแน่นต่ำ' ภูมิภาคที่ช่วงของตัวเลขได้รับการแต่งตั้งเป็นมากกว่าแต่วิธีการเหล่านี้ไม่ได้ดีขนาดไป กรณีของขนาดที่ใหญ่และล้มเหลวใน 'ความหนาแน่นสูง' ภูมิภาคเมื่อช่วงของตัวเลขที่เลือกมีขนาดเล็กกว่า2 N ที่นี่มีความหนาแน่นต่ำและมีความหนาแน่นสูงหมายถึงจำนวนโซลูชัน ภูมิภาคที่มีความหนาแน่นต่ำหมายถึงโซลูชันจำนวนน้อยหรือไม่มีเลยที่มีอยู่ในขณะที่ความหนาแน่นสูงหมายถึงภูมิภาคที่มีโซลูชันจำนวนมาก2N2N2^N2N2N2^N ในพื้นที่ที่มีความหนาแน่นสูง LLL ค้นหาความสัมพันธ์จำนวนเต็ม (เล็ก) ระหว่างอินสแตนซ์ที่กำหนด แต่เมื่อขนาดเพิ่มขึ้นความน่าจะเป็นของความสัมพันธ์ที่พบว่าเป็นผลรวมย่อยที่มีศักยภาพ การตรวจจับความสัมพันธ์จำนวนเต็มเป็นพหุนามภายในขอบเขตเอกซ์โพแนนเชียลของขอบเขตที่เหมาะสมในขณะที่เซตซัมและเอ็นพีพีนั้นชัดเจนว่า NP-Complete ดังนั้นโดยทั่วไปนี่อาจเป็นไปไม่ได้ แต่ถ้าอินสแตนซ์ถูกสุ่ม หรือฉันไม่ควรถามคำถามนี้ด้วยซ้ำและแทนที่จะถามว่ามีวิธีการลดขอบเขตที่อธิบายจากคำตอบที่ดีที่สุดแทนการเพิ่มเลขยกกำลังแทนหรือไม่

1
อีกส่วนหนึ่งของ PARTITION
ฉันได้ลดปัญหาพาร์ติชั่นต่อไปนี้เป็นปัญหาการตั้งเวลาบางอย่าง: อินพุต:รายการของจำนวนเต็มบวกในลำดับที่ไม่ลดลงa1⩽⋯⩽ana1⩽⋯⩽ana_1\leqslant\cdots\leqslant a_n คำถาม:จะมีอยู่เวกเตอร์ดังกล่าวว่า(x1,…,xn)∈{−1,1}n(x1,…,xn)∈{−1,1}n(x_1,\ldots,x_n)\in\{-1,1\}^n ∑i=1naixi=0and∑i=1naixi=0and\sum_{i=1}^na_ix_i=0\qquad\text{and} ∑i=1kaixi⩾0for all k∈{1,…,n}∑i=1kaixi⩾0for all k∈{1,…,n}\sum_{i=1}^ka_ix_i\geqslant 0\quad\text{for all }k\in\{1,\ldots,n\} หากไม่มีเงื่อนไขที่สองมันเป็นเพียงส่วนหนึ่งดังนั้น NP-hard แต่เงื่อนไขที่สองดูเหมือนว่าจะให้ข้อมูลเพิ่มเติมจำนวนมาก ฉันสงสัยว่ามีวิธีที่มีประสิทธิภาพในการตัดสินใจเลือกตัวแปรนี้หรือไม่ หรือมันยังคงยากอยู่ใช่ไหม

1
ผลรวมย่อย DAG เป็นค่าประมาณหรือไม่
เราจะได้รับการกำกับวัฏจักรกราฟด้วยตัวเลขที่เกี่ยวข้องกับแต่ละจุดสุดยอด ( กรัม: V → N ) และจำนวนเป้าหมายT ∈ NG=(V,E)G=(V,E)G=(V,E)g:V→Ng:V→Ng:V\to \mathbb{N}T∈NT∈NT\in \mathbb{N} ปัญหาผลรวมย่อย DAG (อาจมีอยู่ภายใต้ชื่ออื่นการอ้างอิงจะดีมาก) ถามว่ามีจุดยอดเช่นว่าΣ วีฉันกรัม( วีฉัน ) = Tและโวลต์1 → . → วีkเป็นเส้นทางในGv1,v2,...,vkv1,v2,...,vkv_1,v_2,...,v_kΣvig(vi)=TΣvig(vi)=T\Sigma_{v_i}g(v_i) = Tv1→..→vkv1→..→vkv_1\to..\to v_kGGG ปัญหานี้เล็กน้อย NP-Complete เป็นกราฟสกรรมกริยาสมบูรณ์ให้ผลรวมปัญหาเซตย่อยคลาสสิก อัลกอริทึมการประมาณสำหรับปัญหาผลรวมย่อย DAG เป็นอัลกอริทึมที่มีคุณสมบัติดังต่อไปนี้: หากมีเส้นทางที่มีผลรวม T อัลกอริทึมจะส่งกลับค่า TRUE หากไม่มีเส้นทางที่สรุปได้ถึงจำนวนระหว่างและTสำหรับบางc ∈ ( 0 , 1 )อัลกอริทึมจะคืนค่า FALSE(1−c)T(1−c)T(1 − c)TTTTc∈(0,1)c∈(0,1)c\in (0,1) หากมีเส้นทางสรุปจำนวนและTอัลกอริทึมอาจแสดงผลคำตอบใด …

1
สิ่งกีดขวางเช่น ETH
เรารู้ภายใต้ETHETHETHเราไม่สามารถแก้KKK SUM ในฉ( เค) p o l y( n K)f(K)poly(nK)f(K)poly(nK)เวลาภายใต้ฟังก์ชั่นฉ( เค)f(K)f(K) (ปกติ2O(K)2O(K)2^{O(K)} ) มีการคาดเดาใด ๆ ที่ป้องกันความซับซ้อน(logn)O(K)(log⁡n)O(K)(\log n)^{O(K)} (ซึ่งสอดคล้องกับความเป็นไปได้ทั้งหมดเนื่องจากK=Ω(n)K=Ω(n)K=\Omega(n)เราต้องการเวลาเอ็กซ์โปเนนเชียลสำหรับผลรวมย่อย) หรืออนุญาตความเป็นไปได้เช่นนั้นหรือไม่
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.