คำถามติดแท็ก generalized-linear-model

ลักษณะทั่วไปของการถดถอยเชิงเส้นที่อนุญาตให้มีความสัมพันธ์แบบไม่เชิงเส้นผ่าน "ฟังก์ชันลิงก์" และสำหรับความแปรปรวนของการตอบสนองขึ้นอยู่กับค่าที่ทำนายไว้ (เพื่อไม่ให้สับสนกับ "โมเดลเชิงเส้นทั่วไป" ซึ่งขยายโมเดลเชิงเส้นปกติไปยังโครงสร้างความแปรปรวนร่วมทั่วไปและการตอบสนองหลายตัวแปร)

2
ข้อผิดพลาด“ ระบบเป็นเอกพจน์คำนวณ” เมื่อเรียกใช้ glm
ฉันใช้แพ็คเกจฐานข้อมูลที่แข็งแกร่งเพื่อเรียกใช้การประมาณค่า GLM อย่างไรก็ตามเมื่อฉันทำฉันได้รับข้อผิดพลาดต่อไปนี้: Error in solve.default(crossprod(X, DiagB * X)/nobs, EEq) : system is computationally singular: reciprocal condition number = 1.66807e-16 สิ่งนี้หมายความว่า / บ่งชี้? และฉันจะแก้ปัญหาได้อย่างไร PS หากคุณต้องการอะไร (สูตร / ข้อมูลจำเพาะหรือข้อมูล) ที่จะตอบฉันยินดีที่จะให้มัน

1
การคำนวณซ้ำของเอฟเฟกต์จากโมเดล lmer
ฉันเพิ่งอ่านบทความนี้ซึ่งอธิบายถึงวิธีการคำนวณความสามารถในการทำซ้ำ (ความน่าเชื่อถือหรือความสัมพันธ์ภายในอินทราเน็ต) ของการวัดผ่านการสร้างแบบจำลองเอฟเฟกต์ผสม รหัส R จะเป็น: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = attr(vc$id,'stddev')[1]^2 #compute the unadjusted repeatability R = intercept_var/(intercept_var+residual_var) #compute n0, the repeatability adjustment n = as.data.frame(table(my_data$unit)) k = nrow(n) N = sum(n$Freq) n0 = (N-(sum(n$Freq^2)/N))/(k-1) #compute …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

4
Pseudo R สูตรกำลังสองสำหรับ GLMs
ฉันพบสูตรสำหรับหลอกR2R2R^2ในหนังสือขยายแบบจำลองเชิงเส้นด้วย R, Julian J. Faraway (หน้า 59) 1−ResidualDevianceNullDeviance1−ResidualDevianceNullDeviance1-\frac{\text{ResidualDeviance}}{\text{NullDeviance}}NullDeviance นี่เป็นสูตรทั่วไปสำหรับหลอกR2R2R^2สำหรับ GLM หรือไม่

1
ความแตกต่างระหว่างสมการการประมาณทั่วไปกับ GLMM คืออะไร
ฉันใช้ GEE กับข้อมูลที่ไม่สมดุล 3 ระดับโดยใช้ลิงก์ logit สิ่งนี้แตกต่างกันอย่างไร (ในแง่ของข้อสรุปที่ฉันสามารถวาดและความหมายของสัมประสิทธิ์) จาก GLM ที่มีเอฟเฟกต์ผสม (GLMM) และลิงก์ logit ได้อย่างไร รายละเอียดเพิ่มเติม: ข้อสังเกตคือการทดลอง bernoulli เดี่ยว พวกเขาถูกจัดกลุ่มเป็นห้องเรียนและโรงเรียน ใช้การละเว้น R. Casewise ของ NAs 6 ทำนายยังมีเงื่อนไขการโต้ตอบ (ฉันไม่พลิกเด็ก ๆ เพื่อดูว่าพวกเขาขึ้นหัว) ฉันอยากจะอธิบายค่าสัมประสิทธิ์ของอัตราต่อรอง สิ่งนี้มีความหมายเหมือนกันทั้งสองอย่างหรือไม่? มีบางสิ่งที่ซุ่มซ่อนอยู่ในใจของฉันเกี่ยวกับ "ความหมายส่วนเพิ่ม" ในรุ่น GEE ฉันต้องการบิตนั้นอธิบายให้ฉัน ขอบคุณ

3
ทำไม Beta / Dirichlet Regression ไม่ถือว่าเป็นแบบจำลองเชิงเส้นทั่วไป
หลักฐานเป็นคำพูดนี้จากบทความของแพคเกจ R 1betareg ยิ่งไปกว่านั้นโมเดลยังมีคุณสมบัติบางอย่าง (เช่นตัวทำนายเชิงเส้นฟังก์ชันลิงก์พารามิเตอร์การกระจาย) กับโมเดลเชิงเส้นทั่วไป (GLMs; McCullagh และ Nelder 1989) แต่มันไม่ใช่กรณีพิเศษของกรอบนี้ ) คำตอบนี้ยังพูดพาดพิงถึงความจริง: [... ] นี่คือรูปแบบการถดถอยที่เหมาะสมเมื่อตัวแปรการตอบสนองถูกแจกจ่ายเป็นเบต้า คุณสามารถคิดว่ามัน คล้ายกับโมเดลเชิงเส้นทั่วไป มันคือสิ่งที่คุณกำลังมองหา [... ] (เน้นที่เหมือง) ชื่อคำถามบอกว่ามันทั้งหมด: ทำไม Beta / Dirichlet Regression ไม่ถือเป็นแบบจำลองเชิงเส้นแบบทั่วไป (ไม่ใช่แบบ) เท่าที่ฉันรู้เจนเนอรัลลิสโมเดลเชิงเส้นกำหนดโมเดลที่สร้างขึ้นจากความคาดหวังของตัวแปรตามที่พวกเขามีเงื่อนไขในแบบอิสระ fffคือฟังก์ชันลิงก์ที่จับคู่ความคาดหวัง,คือการแจกแจงความน่าจะเป็น,ผลลัพธ์และการทำนาย,คือพารามิเตอร์เชิงเส้นและความแปรปรวนY X บีตาσ 2gggYYYXXXββ\betaσ2σ2\sigma^2 f(E(Y∣X))∼g(βX,Iσ2)f(E(Y∣X))∼g(βX,Iσ2)f\left(\mathbb E\left(Y\mid X\right)\right) \sim g(\beta X, I\sigma^2) GLM ที่แตกต่างกันกำหนด (หรือผ่อนคลาย) ความสัมพันธ์ระหว่างค่าเฉลี่ยและความแปรปรวน แต่ต้องเป็นการกระจายความน่าจะเป็นในตระกูลเลขชี้กำลังซึ่งเป็นสมบัติที่พึงประสงค์ซึ่งควรปรับปรุงความทนทานของการประมาณค่าหากฉันจำได้ถูกต้อง การแจกแจงรุ่นเบต้าและดิริชเล็ตเป็นส่วนหนึ่งของตระกูลเอ็กซ์โพเนนเชียลggg [1] …

3
ทีต้าในการถดถอยแบบทวินามลบด้วย R คืออะไร?
ฉันมีคำถามเกี่ยวกับการถดถอยแบบทวินามลบ: สมมติว่าคุณมีคำสั่งต่อไปนี้: require(MASS) attach(cars) mod.NB<-glm.nb(dist~speed) summary(mod.NB) detach(cars) (โปรดทราบว่ารถยนต์เป็นชุดข้อมูลที่มีอยู่ใน R และฉันไม่สนใจว่ารุ่นนี้เหมาะสมหรือไม่) สิ่งที่ฉันอยากรู้คือฉันจะตีความตัวแปรได้อย่างไรtheta(ส่งคืนที่ด้านล่างของการเรียกไปยังsummary) นี่คือพารามิเตอร์รูปร่างของการแจกแจงแบบเนกกิ้นและเป็นไปได้หรือไม่ที่จะตีความว่าเป็นการวัดความเบ้

2
การวินิจฉัยรุ่นเชิงเส้น (แบบผสม) ทั่วไป (ส่วนที่เหลือโดยเฉพาะ)
ฉันกำลังดิ้นรนกับการหารูปแบบที่เหมาะสมสำหรับข้อมูลการนับยาก (ตัวแปรตาม) ฉันลองรุ่นที่แตกต่างหลากหลาย (โมเดลเอฟเฟ็กต์แบบผสมมีความจำเป็นสำหรับข้อมูลชนิดของฉัน) เช่นlmerและlme4(พร้อมการแปลงล็อก) รวมถึงโมเดลเอฟเฟกต์แบบผสมเชิงเส้นทั่วไปกับครอบครัวต่างๆเช่น Gaussian หรือ Binomial เชิงลบ อย่างไรก็ตามฉันค่อนข้างไม่แน่ใจในวิธีการวินิจฉัยอย่างถูกต้องเหมาะสมกับผลลัพธ์ ฉันพบความคิดเห็นที่แตกต่างกันมากมายในหัวข้อนั้นบนเว็บ ฉันคิดว่าการวินิจฉัยการถดถอยเชิงเส้น (แบบผสม) ค่อนข้างตรงไปตรงมา คุณสามารถไปข้างหน้าและวิเคราะห์ส่วนที่เหลือ (ปกติ) รวมทั้งศึกษา heteroscedasticity โดยการวางแผนค่าติดตั้งเปรียบเทียบกับส่วนที่เหลือ อย่างไรก็ตามคุณจะทำอย่างนั้นสำหรับรุ่นทั่วไปได้อย่างไร ให้เรามุ่งเน้นการถดถอยแบบทวินามลบ (แบบผสม) ในตอนนี้ ฉันเห็นข้อความคัดค้านที่เกี่ยวข้องกับสิ่งที่เหลืออยู่ที่นี่: ในการตรวจสอบค่าคงที่สำหรับค่าปกติในโมเดลเชิงเส้นทั่วไปมันจะถูกชี้ให้เห็นในคำตอบแรกว่าส่วนที่เหลือจะไม่แจกแจงแบบปกติสำหรับ GLM; ฉันคิดว่านี่ชัดเจน อย่างไรก็ตามมันก็ชี้ให้เห็นว่าเพียร์สันและส่วนเบี่ยงเบนเบี่ยงเบนก็ไม่ควรจะเป็นปกติ กระนั้นคำตอบที่สองระบุว่าควรแจกแจกส่วนเบี่ยงเบนปกติ (รวมกับการอ้างอิง) โดยปกติแล้วความเบี่ยงเบนที่เหลืออยู่นั้นควรจะมีการบอกกล่าวไว้ในเอกสารประกอบสำหรับ? glm.diag.plots (จากbootแพ็คเกจของ R ) ในบล็อกโพสต์นี้ผู้เขียนได้ทำการศึกษาเรื่องปกติของสิ่งที่ฉันคิดว่าเป็นของเพียร์สันสำหรับแบบจำลองการถดถอยแบบผสมผลกระทบ NB ตามที่คาดไว้ (ตามความเห็นของฉัน) เศษซากไม่ได้แสดงให้เห็นว่าเป็นเรื่องปกติและผู้เขียนสันนิษฐานว่าแบบจำลองนี้ไม่เหมาะสม อย่างไรก็ตามตามที่ระบุไว้ในความคิดเห็นที่เหลือควรกระจายตามการกระจายทวินามลบ ในความคิดของฉันสิ่งนี้ใกล้เคียงกับความจริงมากที่สุดเนื่องจากส่วนที่เหลือของ GLM สามารถมีการแจกแจงแบบอื่นที่ไม่ใช่แบบปกติ ถูกต้องหรือไม่ จะตรวจสอบสิ่งต่าง ๆ เช่น heteroscedasticity …

1
การเปรียบเทียบระดับของปัจจัยหลังจาก GLM ใน R
นี่เป็นพื้นหลังเล็กน้อยเกี่ยวกับสถานการณ์ของฉัน: ข้อมูลของฉันอ้างถึงจำนวนเหยื่อที่กินโดยนักล่า เนื่องจากจำนวนเหยื่อมี จำกัด (มีให้ 25) ในการทดลองแต่ละครั้งฉันจึงมีคอลัมน์ "ตัวอย่าง" แสดงจำนวนเหยื่อที่มี (เช่น 25 ในการทดลองแต่ละครั้ง) และอีกชื่อเรียกว่า "นับ" ซึ่งเป็นจำนวนของความสำเร็จ ( จำนวนเหยื่อที่ถูกกิน) ฉันใช้การวิเคราะห์ตามตัวอย่างจากหนังสือ R เกี่ยวกับข้อมูลสัดส่วน (หน้า 578) ตัวแปรอธิบายคืออุณหภูมิ (4 ระดับซึ่งฉันถือว่าเป็นปัจจัย) และเพศของนักล่า (เห็นได้ชัดว่าเป็นเพศชายหรือเพศหญิง) ดังนั้นฉันจะลงเอยกับโมเดลนี้: model <- glm(y ~ Temperature+Sex+Temperature*Sex data=predator, family=quasibinomial) หลังจากได้รับตารางการวิเคราะห์ของ Deviance ปรากฎว่าอุณหภูมิและเพศ (แต่ไม่ใช่การมีปฏิสัมพันธ์) มีผลอย่างมากต่อการบริโภคเหยื่อ ตอนนี้ปัญหาของฉัน: ฉันต้องรู้ว่าอุณหภูมิแตกต่างกันคือฉันต้องเปรียบเทียบ 4 อุณหภูมิกับแต่ละอื่น ๆ ถ้าฉันมีโมเดลเชิงเส้นฉันจะใช้ฟังก์ชัน TukeyHSD แต่เมื่อฉันใช้ GLM ฉันไม่สามารถทำได้ …

3
พล็อตการตีความของส่วนที่เหลือเทียบกับค่าติดตั้งจากการถดถอยปัวซอง
ฉันกำลังพยายามปรับให้พอดีกับข้อมูลด้วย GLM (การถดถอยปัวซอง) ในอาร์เมื่อฉันพล็อตส่วนที่เหลือเทียบกับค่าติดตั้งพล็อตที่สร้างหลาย ๆ (เกือบเป็นเส้นตรง สิ่งนี้หมายความว่า? library(faraway) modl <- glm(doctorco ~ sex + age + agesq + income + levyplus + freepoor + freerepa + illness + actdays + hscore + chcond1 + chcond2, family=poisson, data=dvisits) plot(modl)

1
แบบจำลองเชิงเส้นแบบไม่เชิงเส้นกับแบบเชิงเส้นทั่วไป: คุณอ้างถึงการถดถอยแบบลอจิสติกปัวซอง ฯลฯ อย่างไร
ฉันมีคำถามเกี่ยวกับความหมายที่ฉันต้องการความคิดเห็นของนักสถิติเพื่อน เรารู้ว่าแบบจำลองต่างๆเช่นโลจิสติกปัวซอง ฯลฯ ตกอยู่ภายใต้ร่มของตัวแบบเชิงเส้นทั่วไป ตัวแบบมีฟังก์ชั่นไม่เชิงเส้นของพารามิเตอร์ซึ่งอาจถูกจำลองโดยใช้เฟรมเวิร์กโมเดลเชิงเส้นโดยใช้ฟังก์ชันลิงก์ที่เหมาะสม ฉันสงสัยว่าถ้าคุณพิจารณาสถานการณ์ (สอน?) เช่นการถดถอยโลจิสติกเป็น: แบบไม่เชิงเส้นกำหนดรูปแบบของพารามิเตอร์ โมเดลเชิงเส้นเนื่องจากลิงก์เปลี่ยนเราเป็นเฟรมเวิร์กโมเดลเชิงเส้น พร้อมกัน (1) และ (2): มัน "เริ่มต้น" เป็นโมเดลที่ไม่ใช่เชิงเส้น แต่อาจทำงานด้วยวิธีที่ทำให้เราคิดว่ามันเป็นโมเดลเชิงเส้น หวังว่าฉันจะสามารถตั้งค่าแบบสำรวจที่แท้จริง ...

2
เหตุใดจึงมีการกำหนด / การสูญเสียข้อมูลสองรายการที่แตกต่างกันในโลจิสติกส์
ฉันได้เห็นสูตรการสูญเสียโลจิสติกสองประเภท เราสามารถแสดงให้พวกเขามีความเหมือนที่แตกต่างเพียงอย่างเดียวคือความหมายของฉลากYyyy สูตร / สัญกรณ์ 1, :y∈{0,+1}y∈{0,+1}y \in \{0, +1\} L(y,βTx)=−ylog(p)−(1−y)log(1−p)L(y,βTx)=−ylog⁡(p)−(1−y)log⁡(1−p) L(y,\beta^Tx)=-y\log(p)-(1-y)\log(1-p) โดยที่โดยที่ฟังก์ชันโลจิสติกแมปจำนวนจริงเป็น 0,1 ช่วงเวลาp=11+exp(−βTx)p=11+exp⁡(−βTx)p=\frac 1 {1+\exp(-\beta^Tx)}βTxβTx\beta^T x สูตร / สัญกรณ์ 2, :y∈{−1,+1}y∈{−1,+1}y \in \{-1, +1\} L(y,βTx)=log(1+exp(−y⋅βTx))L(y,βTx)=log⁡(1+exp⁡(−y⋅βTx)) L(y,\beta^Tx)=\log(1+\exp{(-y\cdot \beta^Tx})) การเลือกสัญกรณ์ก็เหมือนกับการเลือกภาษามีข้อดีข้อเสียที่จะใช้อย่างใดอย่างหนึ่ง ข้อดีและข้อเสียของเครื่องหมายทั้งสองนี้คืออะไร ความพยายามของฉันที่จะตอบคำถามนี้คือดูเหมือนว่าชุมชนสถิติชอบสัญกรณ์แรกและชุมชนวิทยาศาสตร์คอมพิวเตอร์ชอบสัญกรณ์ที่สอง สัญกรณ์แรกสามารถอธิบายได้ด้วยคำว่า "ความน่าจะเป็น" เนื่องจากฟังก์ชันโลจิสติกจะแปลงจำนวนจริงเป็นช่วงเวลา 0,1βTxβTx\beta^Tx และสัญกรณ์ที่สองนั้นรัดกุมกว่าและง่ายกว่าที่จะเปรียบเทียบกับการสูญเสียบานพับหรือการสูญเสีย 0-1 ฉันถูกไหม? ข้อมูลเชิงลึกอื่น ๆ

6
ตัวอย่างการสร้างแบบจำลองการถดถอยขั้นสูง
ฉันกำลังมองหากรณีศึกษาการถดถอยเชิงเส้นขั้นสูงซึ่งแสดงขั้นตอนที่จำเป็นสำหรับการสร้างแบบจำลองที่ซับซ้อนความสัมพันธ์ที่ไม่ใช่เชิงเส้นหลาย ๆ แบบโดยใช้ GLM หรือ OLS มันเป็นเรื่องยากที่จะหาแหล่งข้อมูลที่นอกเหนือไปจากโรงเรียนตัวอย่าง: หนังสือส่วนใหญ่ที่ฉันอ่านจะไม่ไปไกลกว่าการแปลงบันทึกการตอบสนองควบคู่ไปกับ BoxCox ของผู้ทำนายหนึ่งคนหรือแนวความคิดตามธรรมชาติในกรณีที่ดีที่สุด นอกจากนี้ตัวอย่างทั้งหมดที่ฉันเห็นมาถึงปัญหาการแปลงข้อมูลในรูปแบบที่แยกต่างหากมักจะอยู่ในรูปแบบการทำนายเดียว ฉันรู้ว่าการแปลง BoxCox หรือ YeoJohnson คืออะไร สิ่งที่ฉันกำลังมองหาคือกรณีศึกษาในชีวิตจริงที่มีรายละเอียดซึ่งการตอบสนอง / ความสัมพันธ์ไม่ชัดเจน ตัวอย่างเช่นการตอบสนองไม่ได้เป็นเชิงบวกอย่างเคร่งครัด (ดังนั้นคุณจึงไม่สามารถใช้ log หรือ BoxCox) ผู้ทำนายมีความสัมพันธ์แบบไม่เป็นเส้นตรงระหว่างตัวเองและต่อการตอบสนองและการแปลงข้อมูลความน่าจะเป็นสูงสุดไม่ได้บ่งบอกถึงมาตรฐาน 0.33 หรือ 0.5 เลขยกกำลัง นอกจากนี้ความแปรปรวนที่เหลือพบว่าไม่คงที่ (ไม่เคยเป็น) ดังนั้นการตอบสนองจะต้องมีการเปลี่ยนแปลงเช่นกันและตัวเลือกจะต้องทำระหว่างการถดถอยครอบครัว GLM ที่ไม่ได้มาตรฐานหรือการเปลี่ยนแปลงการตอบสนอง นักวิจัยมีแนวโน้มที่จะตัดสินใจเลือกที่จะหลีกเลี่ยงการเก็บข้อมูลมากเกินไป แก้ไข จนถึงตอนนี้ฉันรวบรวมทรัพยากรต่อไปนี้: กลยุทธ์การสร้างแบบจำลองการถดถอย, F. Harrell อนุกรมเวลาเศรษฐมิติประยุกต์ว. วชิรเอนเดอร์ โมเดลเชิงเส้นไดนามิกพร้อม R, G. Petris การวิเคราะห์การถดถอยประยุกต์, D. Kleinbaum บทนำสู่การเรียนรู้เชิงสถิติ, …

3
แบบจำลองการถดถอยที่มีความแปรปรวนไม่เท่ากัน
ฉันต้องการให้พอดีกับโมเดลเชิงเส้น (lm) ซึ่งความแปรปรวนของค่าคงที่นั้นขึ้นอยู่กับตัวแปรอธิบายอย่างชัดเจน วิธีที่ฉันรู้ว่าการทำเช่นนี้คือการใช้ GLM กับครอบครัวแกมมาในการจำลองความแปรปรวนและแล้วใส่ลงไปในสิ่งที่ตรงกันข้ามน้ำหนักในการทำงาน LM (ตัวอย่าง: http://nitro.biosci.arizona.edu/r/chapter31 .pdf ) ฉันสงสัยว่า: นี่เป็นเทคนิคเดียวหรือไม่ วิธีการอื่นใดที่เกี่ยวข้อง? แพ็คเกจ / ฟังก์ชัน R ใดที่เกี่ยวข้องกับการสร้างแบบจำลองนี้? (อื่น ๆ แล้ว glm, lm)

2
การทดสอบ Wald ในการถดถอย (OLS และ GLMs): t- กับการกระจาย z
ฉันเข้าใจว่าการทดสอบ Wald สำหรับสัมประสิทธิ์การถดถอยขึ้นอยู่กับคุณสมบัติต่อไปนี้ที่เก็บ asymptotically (เช่น Wasserman (2006): สถิติทั้งหมดหน้า 153, 214-215): โดยที่แสดงถึงสัมประสิทธิ์การถดถอยโดยประมาณแสดงถึงข้อผิดพลาดมาตรฐานของสัมประสิทธิ์การถดถอยและเป็นค่าที่น่าสนใจ (มักจะเป็น 0 เพื่อทดสอบว่าค่าสัมประสิทธิ์เป็นหรือไม่ แตกต่างจาก 0) ดังนั้นขนาดการทดสอบ Wald คือ: ปฏิเสธเมื่อใดβ^SE(β)β0β0αH0| W| >zα/2( β^- β0)SEˆ( β^)∼ N( 0 , 1 )(β^−β0)se^(β^)∼N(0,1) \frac{(\hat{\beta}-\beta_{0})}{\widehat{\operatorname{se}}(\hat{\beta})}\sim \mathcal{N}(0,1) β^β^\hat{\beta}SEˆ( β^)se^(β^)\widehat{\operatorname{se}}(\hat{\beta})β0β0\beta_{0}β0β0\beta_{0}αα\alphaH0H0H_{0}| W| > zα / 2|W|>zα/2|W|> z_{\alpha/2}โดยที่ W= β^SEˆ( β^).W=β^se^(β^). W=\frac{\hat{\beta}}{\widehat{\operatorname{se}}(\hat{\beta})}. แต่เมื่อคุณทำการถดถอยเชิงเส้นด้วยlmใน R, -value แทน -value จะใช้ในการทดสอบว่าสัมประสิทธิ์การถดถอยแตกต่างกันอย่างมีนัยสำคัญจาก …

1
การตีความตัวแปรแฝงของตัวแบบเชิงเส้นทั่วไป (GLM)
เวอร์ชั่นสั้น: เรารู้ว่าการถดถอยโลจิสติกและการถดถอยแบบ probit สามารถตีความได้ว่าเกี่ยวข้องกับตัวแปรแฝงอย่างต่อเนื่องที่ได้รับการแยกตามเกณฑ์คงที่บางส่วนก่อนที่จะสังเกต การตีความตัวแปรแฝงที่คล้ายกันมีให้สำหรับการพูดการถดถอยของปัวซองหรือไม่ วิธีการเกี่ยวกับการถดถอยแบบทวินาม (เช่น logit หรือ probit) เมื่อมีผลลัพธ์ที่ไม่ต่อเนื่องกันมากกว่าสองรายการ ในระดับทั่วไปส่วนใหญ่มีวิธีการตีความ GLM ใด ๆ ในแง่ของตัวแปรแฝงหรือไม่? รุ่นยาว: วิธีมาตรฐานในการสร้างแรงจูงใจให้กับโมเดล probit สำหรับผลลัพธ์ไบนารี (เช่นจาก Wikipedia ) มีดังต่อไปนี้ เรามีไม่มีใครสังเกต / แฝงผลตัวแปรที่มีการกระจายตามปกติเงื่อนไขในการทำนายXตัวแปรแฝงนี้อยู่ภายใต้กระบวนการ thresholding เพื่อให้ผลที่ไม่ต่อเนื่องเราจริงสังเกตคือถ้า ,ถ้า<\ สิ่งนี้นำไปสู่ความน่าจะเป็นของให้เพื่อให้อยู่ในรูปแบบของ CDF ปกติพร้อมค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานฟังก์ชันของ thresholdและความชันของการถดถอยของบนX U = 1 Y ≥ γ U = 0 Y < γ U = 1 X …

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.