ตัวแปร“ Normalizing” สำหรับ SVD / PCA
สมมติว่าเรามีตัวแปรNNNวัดได้(a1,a2,…,aN)(a1,a2,…,aN)(a_1, a_2, \ldots, a_N)เราทำการวัดจำนวนM>NM>NM > Nของการวัดแล้วต้องการทำการแยกสลายค่าเอกพจน์บนผลลัพธ์เพื่อค้นหาแกนของความแปรปรวนสูงสุดสำหรับMMM points ในช่องว่างมิติNNN( หมายเหตุ:คิดว่าวิธีการของฉันได้รับการหักออกเพื่อ⟨ ฉัน ⟩ = 0สำหรับทุกฉัน .)aiaia_i⟨ai⟩=0⟨ai⟩=0\langle a_i \rangle = 0iii ทีนี้สมมติว่าตัวแปรหนึ่งตัว (หรือมากกว่า) มีขนาดลักษณะแตกต่างกันอย่างมีนัยสำคัญมากกว่าส่วนที่เหลือ เช่น1อาจมีค่าอยู่ในช่วง10 - 100ในขณะที่ส่วนที่เหลืออาจจะอยู่ที่ประมาณ0.1 - 1 นี้จะเอียงแกนของความแปรปรวนสูงสุดต่อ1ของแกนมากa1a1a_110−10010−10010-1000.1−10.1−10.1-1a1a1a_1 ความแตกต่างของขนาดอาจเป็นเพราะตัวเลือกการวัดที่โชคร้าย (ถ้าเรากำลังพูดถึงข้อมูลทางกายภาพเช่นกิโลเมตรเทียบกับเมตร) แต่ที่จริงแล้วตัวแปรที่แตกต่างกันอาจมีมิติที่แตกต่างกันโดยสิ้นเชิง (เช่นน้ำหนักเทียบกับปริมาตร) อาจไม่มีวิธีที่ชัดเจนในการเลือกหน่วย "เปรียบได้" สำหรับพวกเขา คำถาม: ฉันต้องการทราบว่ามีวิธีการมาตรฐาน / ทั่วไปในการทำให้ข้อมูลเป็นมาตรฐานเพื่อหลีกเลี่ยงปัญหานี้หรือไม่ ผมสนใจในเทคนิคมาตรฐานที่ผลิตขนาดเทียบเคียง1 - Nเพื่อจุดประสงค์นี้มากกว่าขึ้นมาพร้อมกับสิ่งใหม่ ๆa1−aNa1−aNa_1 - a_N แก้ไข: ความเป็นไปได้อย่างหนึ่งคือทำให้ตัวแปรแต่ละตัวเป็นปกติโดยค่าเบี่ยงเบนมาตรฐานหรือสิ่งที่คล้ายกัน อย่างไรก็ตามปัญหาต่อไปนี้จะปรากฏขึ้น: ลองตีความข้อมูลเป็น cloud point …