4
การตีความ Pseudo-R2 ของ McFadden
ฉันมีรูปแบบการถดถอยแบบโลจิสติกแบบไบนารีที่มีการปลอม R-squared ของ McFadden 0.192 โดยมีตัวแปรตามเรียกว่าการชำระเงิน (1 = การชำระเงินและ 0 = ไม่มีการชำระเงิน) การตีความ R-squared แบบหลอกคืออะไร? มันเป็นการเปรียบเทียบแบบสัมพัทธ์สำหรับโมเดลที่ซ้อนกัน (เช่นแบบจำลองตัวแปร 6 ตัวมีการปลอม R-squared ของ McFadden 0.192 ในขณะที่แบบจำลองตัวแปร 5 ตัว (หลังจากลบตัวแปรหนึ่งตัวจากแบบจำลองตัวแปร 6 ดังกล่าวข้างต้น) รุ่นตัวแปร 5 ตัวนี้มีหลอก R - จาก 0.131 เราอยากจะเก็บตัวแปรที่ 6 ไว้ในตัวแบบหรือไม่? หรือเป็นปริมาณที่แน่นอน (เช่นแบบจำลองที่กำหนดซึ่งมีการหลอกของ McFadden R-squared ของ 0.192 นั้นดีกว่ารุ่นใด ๆ ที่มีแบบหลอกของ McFadden R-squared …