1
ตัวประมาณความน่าจะเป็นสูงสุดสำหรับการแจกแจงที่ถูกตัดทอน
พิจารณากลุ่มที่เป็นอิสระที่ได้รับจากตัวแปรสุ่มที่จะถือว่าเป็นไปตามการกระจายตัดทอน (เช่นตัดทอนกระจายปกติ ) รู้จักขั้นต่ำ ( จำกัด ) และค่าสูงสุดและแต่ของพารามิเตอร์ที่ไม่รู้จักและ 2 ถ้าตามการกระจายที่ไม่ถูกตัดทอนตัวประมาณค่าความน่าจะเป็นสูงสุดและสำหรับและจากจะเป็นค่าเฉลี่ยตัวอย่างNNNSSSXXXaaabbbμμ\mu X μ σ 2 μ σ 2 S μ = 1σ2σ2\sigma^2XXXμˆμ^\widehat\muσˆ2σ^2\widehat\sigma^2μμ\muσ2σ2\sigma^2SSS σ 2=1μˆ=1N∑iSiμ^=1N∑iSi\widehat\mu = \frac{1}{N} \sum_i S_iและตัวอย่างแปรปรวน 2 อย่างไรก็ตามสำหรับการแจกแจงที่ถูกตัดทอนตัวอย่างความแปรปรวนที่กำหนดในลักษณะนี้จะถูก จำกัด ด้วยดังนั้นจึงไม่ใช่ตัวประมาณที่สอดคล้องกันเสมอ: สำหรับมันไม่สามารถรวมกันในความน่าจะเป็นเมื่อไปที่อนันต์ ดังนั้นดูเหมือนว่าและไม่ใช่ตัวประมาณโอกาสสูงสุดของและสำหรับการแจกแจงที่ถูกตัดทอน แน่นอนว่าต้องมีการคาดการณ์ตั้งแต่และ(ข-)2σ2>(ข-)2σ2N μ σ 2μσ2μσ2σˆ2=1N∑i(Si−μˆ)2σ^2=1N∑i(Si−μ^)2\widehat\sigma^2 = \frac{1}{N} \sum_i (S_i - \widehat\mu)^2(b−a)2(b−a)2(b-a)^2σ2>(b−a)2σ2>(b−a)2\sigma^2 > (b-a)^2σ2σ2\sigma^2NNNμˆμ^\widehat\muσˆ2σ^2\widehat\sigma^2μμ\muσ2σ2\sigma^2μμ\muσ2σ2\sigma^2 พารามิเตอร์ของการแจกแจงแบบปกติที่ถูกตัดทอนไม่ได้เป็นค่าเฉลี่ยและความแปรปรวน ดังนั้นตัวประมาณค่าความน่าจะเป็นสูงสุดของพารามิเตอร์และของการแจกแจงแบบตัดทอนของค่าต่ำสุดและค่าสูงสุดที่ทราบคืออะไรσμμ\muσσ\sigma