1
หลังหลายตัวแปรปกติ
นี่เป็นคำถามง่าย ๆ แต่ฉันไม่สามารถหาที่มาที่ใดก็ได้บนอินเทอร์เน็ตหรือในหนังสือ ฉันต้องการที่จะเห็นการกำเนิดของวิธีการแบบเบย์หนึ่งปรับปรุงการกระจายปกติหลายตัวแปร ตัวอย่างเช่นลองจินตนาการว่า P(x|μ,Σ)P(μ)==N(μ,Σ)N(μ0,Σ0).P(x|μ,Σ)=N(μ,Σ)P(μ)=N(μ0,Σ0). \begin{array}{rcl} \mathbb{P}({\bf x}|{\bf μ},{\bf Σ}) & = & N({\bf \mu}, {\bf \Sigma}) \\ \mathbb{P}({\bf \mu}) &= & N({\bf \mu_0}, {\bf \Sigma_0})\,. \end{array} หลังจากการเฝ้าสังเกตชุดของ , ผมอยากจะคำนวณx_n}) ฉันรู้ว่าคำตอบคือ\ mathbb {P} ({\ bf \ mu | x_1 ... x_n}) = N ({\ bf \ mu_n}, {\ bf …