1
Gamma GLM เทียบกับ Log-linked Gaussian GLM เทียบกับ LM-log-แปรรูป LM
จากผลลัพธ์ของฉันปรากฏว่า GLM Gamma เป็นไปตามสมมติฐานส่วนใหญ่ แต่เป็นการปรับปรุงที่คุ้มค่าสำหรับ LM ที่แปลงเป็นไฟล์บันทึกหรือไม่ วรรณกรรมส่วนใหญ่ฉันพบข้อตกลงกับ Poisson หรือ Binomial GLMs ฉันพบว่าบทความการประเมินผลของรูปแบบเชิงเส้นของสมมติฐานทั่วไปโดยใช้การสุ่มคืนค่ามีประโยชน์มาก แต่มันไม่มีแผนการจริงที่ใช้ในการตัดสินใจ หวังว่าคนที่มีประสบการณ์สามารถชี้ฉันในทิศทางที่ถูกต้อง ฉันต้องการสร้างแบบจำลองการกระจายตัวของตัวแปรตอบสนองของฉัน T ซึ่งมีพล็อตแบบกระจาย ที่คุณสามารถดูมันเป็นเบ้บวก: ฉันมีปัจจัยสองอย่างที่ต้องพิจารณา: METH และ CASEPART โปรดทราบว่าการศึกษาครั้งนี้ส่วนใหญ่เป็นการสำรวจโดยมีวัตถุประสงค์หลักเพื่อการศึกษานำร่องก่อนทำการสร้างแบบจำลองเชิงทฤษฎีและทำการแสดง DoE รอบ ๆ ฉันมีโมเดลต่อไปนี้ใน R พร้อมโครงการวินิจฉัย: LM.LOG<-lm(log10(T)~factor(METH)+factor(CASEPART),data=tdat) GLM.GAMMA<-glm(T~factor(METH)*factor(CASEPART),data=tdat,family="Gamma"(link='log')) GLM.GAUS<-glm(T~factor(METH)*factor(CASEPART),data=tdat,family="gaussian"(link='log')) ฉันยังได้รับค่า P ต่อไปนี้ผ่านการทดสอบ Shapiro-Wilks ในส่วนที่เหลือ: LM.LOG: 2.347e-11 GLM.GAMMA: 0.6288 GLM.GAUS: 0.6288 ฉันคำนวณค่า AIC และ BIC แต่ถ้าฉันถูกต้องพวกเขาจะไม่บอกฉันมากนักเนื่องจากตระกูลต่าง ๆ …