7
ตัวอย่างที่วิธีการของช่วงเวลาสามารถเอาชนะโอกาสสูงสุดในกลุ่มตัวอย่างขนาดเล็ก?
ตัวประมาณความน่าจะเป็นสูงสุด (MLE) นั้นมีประสิทธิภาพแบบเชิงเส้นกำกับ เราเห็นผลลัพธ์ที่เกิดขึ้นจริงซึ่งพวกเขามักจะทำได้ดีกว่าวิธีการประมาณการณ์ (MoM) (เมื่อมีความแตกต่างกัน) แม้ในขนาดตัวอย่างที่มีขนาดเล็ก ที่นี่ 'ดีกว่า' หมายถึงในแง่ของการมีความแปรปรวนน้อยลงเมื่อทั้งสองไม่เอนเอียงและโดยทั่วไปแล้วความคลาดเคลื่อนกำลังสองน้อยกว่า (MSE) หมายถึงมากขึ้น อย่างไรก็ตามคำถามที่เกิดขึ้น: มีบางกรณีที่ MoM สามารถเอาชนะ MLE - บนMSE ได้หรือไม่พูดในกลุ่มตัวอย่างขนาดเล็ก? (ซึ่งนี่ไม่ใช่สถานการณ์ที่แปลก / เลว - กล่าวคือให้เงื่อนไขว่า ML จะมีอยู่ / มีประสิทธิภาพในการถือ asymptotically) คำถามติดตามจะเป็น 'ขนาดเล็กได้อย่างไร' - นั่นคือถ้ามีตัวอย่างมีบางอย่างที่ยังคงมีขนาดตัวอย่างที่ค่อนข้างใหญ่บางทีแม้แต่ขนาดตัวอย่างที่แน่นอนทั้งหมด? [ฉันสามารถหาตัวอย่างของตัวประมาณแบบเอนเอียงที่สามารถเอาชนะ ML ในตัวอย่างที่ จำกัด ได้ แต่ไม่ใช่ MoM] เพิ่มการบันทึกย้อนหลัง: การมุ่งเน้นของฉันที่นี่เป็นหลักในกรณีที่ไม่มีการเปลี่ยนแปลง (ซึ่งจริงๆแล้วคือสิ่งที่ความอยากรู้พื้นฐานของฉันมาจาก) ฉันไม่ต้องการแยกแยะกรณีหลายตัวแปร แต่ฉันก็ไม่ต้องการโดยเฉพาะอย่างยิ่งที่จะหลงทางในการอภิปรายอย่างกว้างขวางเกี่ยวกับการประเมินของ James-Stein