5
เกี่ยวกับความสำคัญของการตั้งสมมติฐานในการเรียนรู้ทางสถิติ
ในการเรียนรู้ทางสถิติโดยปริยายหรืออย่างชัดเจนเรามักจะสันนิษฐานว่าชุดการฝึกอบรมD={X,y}D={X,y}\mathcal{D} = \{ \bf {X}, \bf{y} \}ประกอบด้วยการป้อนข้อมูลNNN / ตอบสนอง tuples (Xi,yi)(Xi,yi)({\bf{X}}_i,y_i)ที่มาจากการกระจายข้อต่อเดียวกัน ด้วยP(X,y)P(X,y)\mathbb{P}({\bf{X}},y) p(X,y)=p(y|X)p(X)p(X,y)=p(y|X)p(X) p({\bf{X}},y) = p( y \vert {\bf{X}}) p({\bf{X}}) และความสัมพันธ์ที่เราพยายามรวบรวมผ่านอัลกอริทึมการเรียนรู้เฉพาะ ในทางคณิตศาสตร์สมมติฐาน iid นี้เขียน:p(y|X)p(y|X)p( y \vert {\bf{X}}) (Xi,yi)∼P(X,y),∀i=1,...,N(Xi,yi) independent of (Xj,yj),∀i≠j∈{1,...,N}(Xi,yi)∼P(X,y),∀i=1,...,N(Xi,yi) independent of (Xj,yj),∀i≠j∈{1,...,N}\begin{gather} ({\bf{X}}_i,y_i) \sim \mathbb{P}({\bf{X}},y), \forall i=1,...,N \\ ({\bf{X}}_i,y_i) \text{ independent of } ({\bf{X}}_j,y_j), \forall i \ne j …