การสร้างกราฟด้วยออปติกแบบ Trivial
ฉันกำลังแก้ไขรูปแบบการเข้ารหัสบางอย่าง เพื่อแสดงความไม่เพียงพอฉันได้วางแผนโปรโตคอลที่ออกแบบมาโดยอาศัยกราฟมอร์ฟิซึ่มส์ มันเป็น "ธรรมดา" (ยังเป็นที่ถกเถียงกันอยู่!) ที่จะสมมติว่าการดำรงอยู่ของอัลกอริธึม BPP สามารถสร้าง "กรณียากของปัญหากราฟ Isomorphism" (พร้อมกับพยานมอร์ฟิซึ่มส์) ในโปรโตคอลที่วางแผนไว้ของฉันฉันจะสมมติว่ามีอัลกอริทึม BPP ดังกล่าวซึ่งตรงตามข้อกำหนดเพิ่มเติมหนึ่งข้อ: ให้กราฟที่สร้างขึ้นจะและG_2มีเพียงพยานคนหนึ่ง (เปลี่ยนแปลง) ที่แมปเป็นเพื่อG_2G1G1G_1G2G2G_2G1G1G_1G2G2G_2 นี่ก็หมายความว่ามีเพียงautomorphisms จิ๊บจ๊อย ในคำอื่น ๆ ฉันสมมติว่าการดำรงอยู่ของอัลกอริทึม BPP บางอย่างซึ่งทำงานดังนี้:G1G1G_1 บนอินพุทให้สร้างกราฟ -vertexซึ่งมันจะมีออโตฟิวชั่นเพียงเล็กน้อยเท่านั้น1n1n1^nnnnG1G1G_1 เลือกการเปลี่ยนแปลงสุ่มกว่าและใช้มันในที่จะได้รับG_2ππ\pi[ n ] = { 1 , 2 , … , n }[n]={1,2,...,n}[n]=\{1,2,\ldots,n\}G1G1G_1G2G2G_2 เอาท์พุท ⟩⟨ กรัม1, ช2, π⟩⟨G1,G2,π⟩\langle G_1,G_2,\pi \rangle ฉันจะสมมติว่าในขั้นตอนที่ 1 สามารถสร้างได้ตามต้องการและ เป็นตัวอย่างที่ยากของปัญหากราฟมอร์ฟ …