3
หลักการที่อยู่เบื้องหลังการบรรจบกันของวิธีการสเปซย่อย Krylov สำหรับการแก้ระบบเชิงเส้นของสมการคืออะไร?
ที่ฉันเข้าใจมันมีสองประเภทหลักของวิธีการวนซ้ำสำหรับการแก้ระบบเชิงเส้นของสมการ: วิธีการหยุดนิ่ง (Jacobi, Gauss-Seidel, SOR, Multigrid) วิธีการของ Krylov Subspace (Conjugate Gradient, GMRES และอื่น ๆ ) ฉันเข้าใจว่าวิธีการที่อยู่กับที่ส่วนใหญ่ทำงานโดยการทำซ้ำไปเรื่อย ๆ (ปรับให้เรียบ) โหมดฟูริเยร์ของข้อผิดพลาด ตามที่ฉันเข้าใจแล้ววิธีการไล่ระดับสีแบบคอนจูเกต (วิธีการสเปซ Krylov) ทำงานโดย "ก้าว" ผ่านชุดทิศทางการค้นหาที่ดีที่สุดจากพลังของเมทริกซ์ที่นำไปใช้กับส่วนที่เหลือหลักการนี้เป็นเรื่องธรรมดาสำหรับวิธีการทั้งหมดของ Krylov หรือไม่? ถ้าไม่เราจะอธิบายหลักการที่อยู่เบื้องหลังการรวมตัวกันของวิธีการย่อย Krylov โดยทั่วไปได้อย่างไรnnn