การกระจายแบบไม่ระบุตัวอย่างความแปรปรวนของตัวอย่างที่ไม่ปกติ
นี่เป็นการแก้ไขปัญหาทั่วไปที่เกิดจาก คำถามนี้ หลังจากได้รับการแจกแจงเชิงซีมโทติคของความแปรปรวนตัวอย่างเราสามารถใช้วิธีเดลต้าเพื่อให้ได้การแจกแจงที่สอดคล้องกันสำหรับค่าเบี่ยงเบนมาตรฐาน ขอตัวอย่างขนาดของตัวแปรสุ่มแบบไม่ปกติของ iid , มีค่าเฉลี่ยและความแปรปรวน 2 ตั้งค่าเฉลี่ยตัวอย่างและความแปรปรวนตัวอย่างเป็น nnn{Xi},i=1,...,n{Xi},i=1,...,n\{X_i\},\;\; i=1,...,nμμ\muσ2σ2\sigma^2x¯=1n∑i=1nXi,s2=1n−1∑i=1n(Xi−x¯)2x¯=1n∑i=1nXi,s2=1n−1∑i=1n(Xi−x¯)2\bar x = \frac 1n \sum_{i=1}^nX_i,\;\;\; s^2 = \frac 1{n-1} \sum_{i=1}^n(X_i-\bar x)^2 เรารู้ว่า E(s2)=σ2,Var(s2)=1n(μ4−n−3n−1σ4)E(s2)=σ2,Var(s2)=1n(μ4−n−3n−1σ4)E(s^2) = \sigma^2, \;\;\; \operatorname {Var}(s^2) = \frac{1}{n} \left(\mu_4 - \frac{n-3}{n-1}\sigma^4\right) โดยที่และเรา จำกัด ความสนใจของเราในการแจกแจงว่าช่วงเวลาใดที่จำเป็นต้องมีอยู่และมีขอบเขต จำกัด มีอยู่จริงและมีขอบเขต จำกัดμ4=E(Xi−μ)4μ4=E(Xi−μ)4\mu_4 = E(X_i -\mu)^4 มันถืออย่างนั้นหรือเปล่า n−−√(s2−σ2)→dN(0,μ4−σ4)?n(s2−σ2)→dN(0,μ4−σ4)?\sqrt n(s^2 - \sigma^2) \rightarrow_d N\left(0,\mu_4 …