UMVUE จากในขณะที่สุ่มตัวอย่างจากประชากร
ปล่อยเป็นตัวอย่างแบบสุ่มจากความหนาแน่น(X1,X2,…,Xn)(X1,X2,…,Xn)(X_1,X_2,\ldots,X_n)fθ(x)=θxθ−110<x<1,θ>0fθ(x)=θxθ−110<x<1,θ>0f_{\theta}(x)=\theta x^{\theta-1}\mathbf1_{00 ฉันกำลังพยายามที่จะหา UMVUE ของtheta}θ1+θθ1+θ\frac{\theta}{1+\theta} ความหนาแน่นรอยต่อของคือ(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n) fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0\begin{align} f_{\theta}(x_1,\cdots,x_n)&=\theta^n\left(\prod_{i=1}^n x_i\right)^{\theta-1}\mathbf1_{00 \end{align} เนื่องจากประชากร pdfเป็นสมาชิกของตระกูลเลขชี้กำลังหนึ่งพารามิเตอร์นี่แสดงให้เห็นว่าสถิติที่เพียงพอสำหรับคือfθfθf_{\theta}θθ\thetaT(X1,…,Xn)=∑i=1nlnXiT(X1,…,Xn)=∑i=1nlnXiT(X_1,\ldots,X_n)=\sum_{i=1}^n\ln X_i ตั้งแต่ตอนแรกจะให้ UMVUE ของให้ฉัน ทฤษฎีบท Lehmann-Scheffe ถ้าไม่แน่ใจว่าความคาดหวังที่มีเงื่อนไขนี้สามารถพบได้โดยตรงหรือหนึ่งที่มีการพบว่าเงื่อนไขการจำหน่าย x_iE(X1)=θ1+θE(X1)=θ1+θE(X_1)=\frac{\theta}{1+\theta}E(X1∣T)E(X1∣T)E(X_1\mid T)θ1+θθ1+θ\frac{\theta}{1+\theta}X1∣∑ni=1lnXiX1∣∑i=1nlnXiX_1\mid \sum_{i=1}^n\ln X_i ในทางกลับกันฉันพิจารณาวิธีการต่อไปนี้: เรามีเพื่อให้{2n}Xi∼i.i.dBeta(θ,1)⟹−2θlnXi∼i.i.dχ22Xi∼i.i.dBeta(θ,1)⟹−2θlnXi∼i.i.dχ22X_i\stackrel{\text{i.i.d}}{\sim}\text{Beta}(\theta,1)\implies -2\theta\ln X_i\stackrel{\text{i.i.d}}{\sim}\chi^2_2−2θT∼χ22n−2θT∼χ2n2-2\theta\, T\sim\chi^2_{2n} ดังนั้น TH เพื่อช่วงเวลาดิบเกี่ยวกับศูนย์ตามที่คำนวณโดยใช้ไคสแควร์เป็น pdfrrr−2θT−2θT-2\theta\,TE(−2θT)r=2rΓ(n+r)Γ(n),n+r>0E(−2θT)r=2rΓ(n+r)Γ(n),n+r>0E(-2\theta\,T)^r=2^r\frac{\Gamma\left(n+r\right)}{\Gamma\left(n\right)}\qquad ,\,n+r>0 ดังนั้นดูเหมือนว่าสำหรับทางเลือกที่แตกต่างกันของจำนวนเต็ม , ฉันจะได้รับประมาณเป็นกลาง (และ UMVUEs) ของอำนาจแตกต่างกันของจำนวนเต็ม\ตัวอย่างเช่นและให้ฉันเป็น UMVUE และตามลำดับrrrθθ\thetaE(−Tn)=1θE(−Tn)=1θE\left(-\frac{T}{n}\right)=\frac{1}{\theta}E(1−nT)=θE(1−nT)=θE\left(\frac{1-n}{T}\right)=\theta1θ1θ\frac{1}{\theta}θθ\theta ตอนนี้เมื่อเรามี1}θ>1θ>1\theta>1θ1+θ=(1+1θ)−1=1−1θ+1θ2−1θ3+⋯θ1+θ=(1+1θ)−1=1−1θ+1θ2−1θ3+⋯\frac{\theta}{1+\theta}=\left(1+\frac{1}{\theta}\right)^{-1}=1-\frac{1}{\theta}+\frac{1}{\theta^2}-\frac{1}{\theta^3}+\cdots ฉันสามารถรับ UMVUE ได้และอื่น ๆ ดังนั้นการรวม UMVUE เหล่านี้เป็นฉันจะได้รับที่จำเป็น UMVUE …