เป็นเรื่องยากไหมที่จะเติมถังขยะด้วยการเคลื่อนไหวขั้นต่ำ?
มีถังขยะและประเภทของลูก TH ถังมีป้ายสำหรับก็เป็นจำนวนที่คาดหวังของลูกประเภทJnnnmmmiiiai,jai,ja_{i,j}1≤j≤m1≤j≤m1\leq j\leq mjjj คุณเริ่มต้นด้วยลูกประเภทJลูกของแต่ละชนิดมีน้ำหนักและต้องการที่จะนำลูกลงไปในถังขยะถังดังกล่าวว่ามีน้ำหนักC_iการกระจายตัวของลูกที่สภาพก่อนหน้านี้เรียกว่าทางออกที่เป็นไปได้bjbjb_jjjjjjjwjwjw_jiiicicic_i พิจารณาวิธีแก้ปัญหาที่เป็นไปได้ด้วยลูกบอลประเภทในถังจากนั้นค่าใช้จ่ายคือ. เราต้องการค้นหาวิธีแก้ปัญหาที่มีต้นทุนต่ำที่สุดxi,jxi,jx_{i,j}jjjiii∑ni=1∑mj=1|ai,j−xi,j|∑i=1n∑j=1m|ai,j−xi,j|\sum_{i=1}^n \sum_{j=1}^m |a_{i,j}-x_{i,j}| ปัญหานี้เป็นอย่างชัดเจน NP-ยากถ้ามีข้อ จำกัด ใน\} ปัญหาผลรวมเซ็ตย่อยจะลดการดำรงอยู่ของโซลูชันที่เป็นไปได้{wj}{wj}\{w_j\} อย่างไรก็ตามหากเราเพิ่มเงื่อนไขที่หารสำหรับทุกดังนั้นการลดจำนวนผลรวมของเซ็ตย่อยจะไม่ทำงานอีกต่อไปดังนั้นจึงไม่ชัดเจนว่าปัญหาที่เกิดขึ้นยังคงเป็นปัญหาที่ยากหรือไม่ การตรวจสอบการมีอยู่ของโซลูชันที่เป็นไปได้นั้นใช้เวลาเพียง (แนบท้ายคำถาม) แต่สิ่งนี้ไม่ได้ให้วิธีแก้ปัญหาที่เป็นไปได้ในราคาที่ถูกที่สุดwjwjw_jwj+1wj+1w_{j+1}jjjO(nm)O(nm)O(n\,m) ปัญหามีการกำหนดโปรแกรมจำนวนเต็มเทียบเท่า ให้สำหรับ : ai,j,ci,bj,wjai,j,ci,bj,wja_{i,j},c_i,b_j,w_j1≤i≤n,1≤j≤m1≤i≤n,1≤j≤m1\leq i\leq n,1\leq j\leq mMinimize:subject to:∑i=1n∑j=1m|ai,j−xi,j|∑j=1mxi,jwj=ci for all 1≤i≤n∑i=1nxi,j≤bj for all 1≤j≤mxi,j≥0 for all 1≤i≤n,1≤j≤mMinimize:∑i=1n∑j=1m|ai,j−xi,j|subject to:∑j=1mxi,jwj=ci for all 1≤i≤n∑i=1nxi,j≤bj for all 1≤j≤mxi,j≥0 for all 1≤i≤n,1≤j≤m\begin{align*} \text{Minimize:} & \sum_{i=1}^n …