1
การหาระนาบการตัดที่แยกรูปทรงหลายเหลี่ยมอย่างเท่าเทียมกัน
สมมติว่าเรามีรูปทรงหลายเหลี่ยมในรูปแบบมาตรฐาน: A x = bx ≥ 0Ax=bx≥0\begin{equation*} \begin{array}{rl} \mathbf{A}\mathbf{x} = \mathbf{b} \\\\ \mathbf{x} \ge 0 \end{array} \end{equation*} มีวิธีการใด ๆ ที่รู้จักกันในการหาไฮเปอร์เพลนที่แยกโพลีเฮดตรอนในลักษณะที่จำนวนจุดยอดในแต่ละด้านของไฮเปอร์เพลนนั้นเท่ากันหรือไม่? (นั่นคืออัลกอริธึมที่ลดความแตกต่างที่แน่นอนของจุดสุดยอดด้านที่สองด้านของการแยก)d x + d0= 0dx+d0=0\mathbf{d} \mathbf{x} +d_0= 0 นอกจากนี้ยังมีผลลัพธ์ใด ๆ ที่ทราบเกี่ยวกับความซับซ้อนของปัญหานี้หรือไม่ ภาคผนวก: การ จำกัด ประเภทของการตัด: นี่คือการเปลี่ยนแปลงของปัญหาดั้งเดิมด้วยความหวังว่ามันจะง่ายต่อการแก้ปัญหากว่าเดิม: มีวิธีการได้อย่างมีประสิทธิภาพหรือคำนวณประมาณการที่ประสานงานไฮเปอร์เพลนของรูปแบบd ฉันx ฉัน + d 0 = 0จะให้ผลผลิตแตกต่างแน่นอนต่ำสุดของ cardinalities จุดสุดยอดทั้งสองด้านของการแยกหรือไม่ โดยการที่มีประสิทธิภาพฉันหมายถึงสิ่งใดที่มีประสิทธิภาพมากกว่าการนับอย่างละเอียดของความเป็นหัวใจเชิงยอดสำหรับการแยกดังกล่าวที่เป็นไปได้ทั้งหมดผมiidผมxผม+ d0= 0dixi+d0=0d_ix_i + …