1
ความซับซ้อนของปัญหาเซตที่มีอิทธิพลในกราฟย่อยเฉพาะของกราฟ chordal
ฉันสนใจในความซับซ้อนของปัญหาที่มีอำนาจเหนือชุด (DSP) ในบางชั้นเรียนกราฟเฉพาะอย่างซึ่งเป็นคลาสย่อยของกราฟคอร์ดั กราฟเป็นกราฟเส้นทางที่ไม่ได้บอกทิศทางหากเป็นกราฟจุดตัดยอดของตระกูลของเส้นทางในต้นไม้ที่ไม่ได้บอกทิศทาง ให้ UP เป็นคลาสของกราฟพา ธ ที่ไม่ได้บอกทิศทาง กราฟเป็นกราฟEPTหากเป็นกราฟตัดกันของตระกูลของเส้นทางในต้นไม้ที่ไม่ได้กำหนดทิศทาง กราฟ EPT อาจไม่ใช่คอร์ด แต่ให้ CEPT เป็นคลาสของกราฟ EPT คอร์ด กราฟคือกราฟเส้นทางชี้นำ (รูต)หากเป็นกราฟจุดตัดยอดของตระกูลเส้นทางกำกับในต้นไม้กำกับที่มีรากบางต้น (เช่นอาร์คทั้งหมดชี้ไปจากราก) ให้ RDP เป็นคลาสของกราฟพา ธ ที่กำกับ (root) เรามีRDP⊆CEPT⊆UP⊆chordalRDP⊆CEPT⊆UP⊆chordalRDP\subseteq CEPT \subseteq UP\subseteq chordal เป็นที่ทราบกันว่า DSP สามารถแก้ปัญหาแบบเส้นตรงเวลาสำหรับกราฟใน RDP แต่ NP-complete สำหรับกราฟของ UP [ Booth and Johnson, 1981 ] ฉันสนใจในกราฟพิเศษที่สอดคล้องกับกราฟจุดตัดของครอบครัวของเส้นทางที่ไม่มีทิศทางในต้นไม้ที่เหมือนหนอนผีเสื้อที่มีระดับสูงสุด 3 อย่างแม่นยำยิ่งขึ้น "หนอนผีเสื้อ" …