กวีนิพนธ์ของความซับซ้อนที่ซับซ้อน
ในกระดาษสุ่มออราเคิลสมมติฐานเป็นเท็จ , ผู้เขียน (ช้างช, Goldreich, Hartmanis, Håstad, Ranjan และ Rohatgi) หารือเกี่ยวกับผลกระทบของสมมติฐานสุ่ม oracle พวกเขาให้เหตุผลว่าเรารู้เพียงเล็กน้อยเกี่ยวกับการแบ่งแยกระหว่างคลาสที่ซับซ้อนและผลลัพธ์ส่วนใหญ่เกี่ยวข้องกับการใช้สมมติฐานที่สมเหตุสมผลหรือสมมติฐานสุ่ม ข้อสันนิษฐานที่สำคัญที่สุดและเชื่อกันอย่างกว้างขวางคือว่า PH จะไม่ยุบตัว ในคำพูดของพวกเขา: ในวิธีการหนึ่งเราถือว่าเป็นสมมติฐานการทำงานที่ PH มีหลายระดับอย่างไม่ จำกัด ดังนั้นข้อสันนิษฐานใด ๆ ที่บ่งบอกว่า PH นั้นมีค่า จำกัด ถือว่าไม่ถูกต้อง ยกตัวอย่างเช่นคาร์พและลิปตันแสดงให้เห็นว่าถ้า NP ⊆ P / โพลีแล้ว PH ทรุด\ดังนั้นเราเชื่อว่า SAT ไม่มีวงจรขนาดพหุนาม ในทำนองเดียวกันเราเชื่อว่าทัวริงสมบูรณ์และหลายหนึ่งชุดที่สมบูรณ์แบบสำหรับ NP ไม่ได้เบาบางเพราะMahaneyแสดงให้เห็นว่าเงื่อนไขเหล่านี้จะยุบ PH เราสามารถแสดงให้เห็นได้ว่าสำหรับ k ≥ 0,แสดงว่า PH นั้นมีขอบเขต จำกัด ดังนั้นเราเชื่อว่าΣP2Σ2P\Sigma^P_2PSAT[k]=PSAT[k+1]PSAT[k]=PSAT[k+1]P^{\mathrm{SAT}[k]} …