ผลรวมย่อย DAG เป็นค่าประมาณหรือไม่
เราจะได้รับการกำกับวัฏจักรกราฟด้วยตัวเลขที่เกี่ยวข้องกับแต่ละจุดสุดยอด ( กรัม: V → N ) และจำนวนเป้าหมายT ∈ NG=(V,E)G=(V,E)G=(V,E)g:V→Ng:V→Ng:V\to \mathbb{N}T∈NT∈NT\in \mathbb{N} ปัญหาผลรวมย่อย DAG (อาจมีอยู่ภายใต้ชื่ออื่นการอ้างอิงจะดีมาก) ถามว่ามีจุดยอดเช่นว่าΣ วีฉันกรัม( วีฉัน ) = Tและโวลต์1 → . → วีkเป็นเส้นทางในGv1,v2,...,vkv1,v2,...,vkv_1,v_2,...,v_kΣvig(vi)=TΣvig(vi)=T\Sigma_{v_i}g(v_i) = Tv1→..→vkv1→..→vkv_1\to..\to v_kGGG ปัญหานี้เล็กน้อย NP-Complete เป็นกราฟสกรรมกริยาสมบูรณ์ให้ผลรวมปัญหาเซตย่อยคลาสสิก อัลกอริทึมการประมาณสำหรับปัญหาผลรวมย่อย DAG เป็นอัลกอริทึมที่มีคุณสมบัติดังต่อไปนี้: หากมีเส้นทางที่มีผลรวม T อัลกอริทึมจะส่งกลับค่า TRUE หากไม่มีเส้นทางที่สรุปได้ถึงจำนวนระหว่างและTสำหรับบางc ∈ ( 0 , 1 )อัลกอริทึมจะคืนค่า FALSE(1−c)T(1−c)T(1 − c)TTTTc∈(0,1)c∈(0,1)c\in (0,1) หากมีเส้นทางสรุปจำนวนและTอัลกอริทึมอาจแสดงผลคำตอบใด …