1
จำนวนรอบมิลโตเนียนในกราฟสุ่ม
เราคิดว่าG∈G(n,p),p=lnn+lnlnn+c(n)nG∈G(n,p),p=lnn+lnlnn+c(n)nG\in G(n,p),p=\frac{\ln n +\ln \ln n +c(n)}{n} . ดังนั้นข้อเท็จจริงต่อไปนี้จึงเป็นที่รู้จักกันดี: Pr[G has a Hamiltonian cycle]=⎧⎩⎨⎪⎪10e−e−c(c(n)→∞)(c(n)→−∞)(c(n)→c)Pr[G has a Hamiltonian cycle]={1(c(n)→∞)0(c(n)→−∞)e−e−c(c(n)→c)\begin{eqnarray} Pr [G\mbox{ has a Hamiltonian cycle}]= \begin{cases} 1 & (c(n)\rightarrow \infty) \\ 0 & (c(n)\rightarrow - \infty) \\ e^{-e^{-c}} & (c(n)\rightarrow c) \end{cases} \end{eqnarray} ฉันต้องการทราบผลลัพธ์เกี่ยวกับจำนวนรอบมิลโตเนียนในกราฟสุ่ม ไตรมาสที่ 1 จำนวนรอบมิลโตเนียนรอบที่คาดไว้สำหรับเท่าใด?G(n,p)G(n,p)G(n,p) ไตรมาสที่ 2 ความน่าจะเป็นสำหรับความน่าจะเป็นที่ขอบpบนG ( …