คำถามติดแท็ก computing-over-reals

3
อะไรคือเหตุผลที่นักวิจัยในเรขาคณิตการคำนวณชอบรุ่น BSS / real-RAM?
พื้นหลัง การคำนวณจำนวนจริงมีความซับซ้อนมากกว่าการคำนวณจำนวนธรรมชาติเนื่องจากจำนวนจริงเป็นวัตถุที่ไม่มีที่สิ้นสุดและมีจำนวนจริงมากมายนับไม่ถ้วนดังนั้นจำนวนจริงจึงไม่สามารถแสดงอย่างเป็นจริงได้ด้วยจำนวน จำกัด บนตัวอักษรที่ จำกัด ซึ่งแตกต่างจากความสามารถในการคำนวณแบบดั้งเดิมในขอบเขต จำกัด ที่รูปแบบการคำนวณที่แตกต่างกันเช่น: แลมบ์ดาแคลคูลัส, ทัวริงจักร, ฟังก์ชันแบบเรียกซ้ำ, ... กลายเป็นสิ่งที่เท่าเทียมกัน (อย่างน้อยสำหรับการคำนวณ ตัวเลขจริงซึ่งไม่เข้ากัน ตัวอย่างเช่นในโมเดลTTE (ดู [Wei00]) ซึ่งเป็นรูปแบบเครื่องทัวริงคลาสสิกที่ใกล้เคียงที่สุดตัวเลขจริงจะแสดงโดยใช้เทปอินพุทที่ไม่มีที่สิ้นสุด (เช่นออริกาของทัวริง) และไม่สามารถตัดสินใจเปรียบเทียบและ ความสัมพันธ์ที่เท่าเทียมกันระหว่างตัวเลขทั้งสองให้เป็นจำนวนจริง (ในเวลา จำกัด ) ในทางกลับกันในรุ่น BBS / real-RAM ซึ่งคล้ายกับรุ่นของเครื่อง RAMเรามีตัวแปรที่สามารถเก็บจำนวนจริงโดยพลการและการเปรียบเทียบและความเท่าเทียมกันเป็นหนึ่งในการดำเนินงานปรมาณูของรูปแบบ ด้วยเหตุผลนี้และเหตุผลที่คล้ายคลึงกันผู้เชี่ยวชาญหลายคนบอกว่าแบบจำลอง BSS / real-RAM ไม่เหมือนจริง (ไม่สามารถนำไปใช้ได้อย่างน้อยก็ไม่ได้อยู่ในคอมพิวเตอร์ดิจิทัลปัจจุบัน) และพวกเขาชอบ TTE หรือโมเดลอื่น ๆ ที่เทียบเท่ากับ TTE โมเดล Ko-Friedman ฯลฯ ถ้าฉันเข้าใจถูกต้องโมเดลการคำนวณเริ่มต้นที่ใช้ในComputational GeometryคือโมเดลBSS (aka real-RAM …

2
ปัญหาผลรวมของสแควร์รูตแข็งหรือไม่
ผลรวมของรากที่สองปัญหาขอให้ลำดับสองและของจำนวนเต็มบวกไม่ว่าจะเป็นผลรวมน้อยกว่าเท่ากับหรือมากกว่า กว่าผลรวม{} สถานะความซับซ้อนของปัญหานี้เปิดอยู่ ดูโพสต์นี้สำหรับรายละเอียดเพิ่มเติม ปัญหานี้เกิดขึ้นตามธรรมชาติในเรขาคณิตการคำนวณโดยเฉพาะอย่างยิ่งในปัญหาที่เกี่ยวข้องกับเส้นทางที่สั้นที่สุดของ Euclidean และเป็นสิ่งสำคัญที่ทำให้การถ่ายโอนอัลกอริทึมสำหรับปัญหาเหล่านั้นจาก RAM จริงไปยัง RAM จำนวนเต็มมาตรฐานa1,a2,…,ana1,a2,…,ana_1, a_2, \dots, a_nb1,b2,…,bnb1,b2,…,bnb_1, b_2, \dots, b_n∑iai−−√∑iai\sum_i \sqrt{a_i}∑ibi−−√∑ibi\sum_i \sqrt{b_i} เรียกปัญหาΠ ผลบวกของสแควร์รูทยาก (ตัวย่อΣ√-hard?) ถ้ามีการลดเวลาพหุนามจากผลรวมของปัญหารากที่สองเป็นΠ ไม่ยากที่จะพิสูจน์ว่าปัญหาต่อไปนี้คือผลรวมของสแควร์รูทยาก เส้นทางที่สั้นที่สุดในกราฟเรขาคณิตแบบยุคลิด 4d อินสแตนซ์: กราฟซึ่งจุดยอดเป็นจุดในโดยมีขอบถ่วงน้ำหนักโดย Euclidean distane; สองจุดยอดและG=(V,E)G=(V,E)G=(V,E)Z4Z4\mathbb{Z}^4sssttt เอาท์พุท: เส้นทางที่สั้นที่สุดจากไปในGssstttGGG แน่นอนว่าปัญหานี้สามารถแก้ไขได้ในพหุนามในแรมจริงโดยใช้อัลกอริทึมของ Dijkstra แต่การเปรียบเทียบแต่ละครั้งในอัลกอริทึมนั้นจำเป็นต้องแก้ปัญหาผลรวมของสแควร์รูท การลดใช้ความจริงที่ว่าจำนวนเต็มใด ๆ สามารถเขียนเป็นผลรวมของสี่เหลี่ยมที่สมบูรณ์แบบสี่อัน เอาท์พุทของการลดจริง ๆ แล้วเป็นวัฏจักรของจุดยอด2n+22n+22n+2 ปัญหาอื่น ๆ คือ sum-of-square-root-hard? ฉันสนใจเป็นพิเศษในปัญหาที่มีการแก้ปัญหาเวลาพหุนามในแรมจริง ดู คำถามก่อนหน้าของฉันสำหรับความเป็นไปได้ ตามที่โรบินแนะนำคำตอบที่น่าเบื่อนั้นน่าเบื่อ …

3
ผลที่ตามมาของการดำรงอยู่ของอัลกอริทึมพหุนามอย่างยิ่งสำหรับการเขียนโปรแกรมเชิงเส้น?
หนึ่งในจอกศักดิ์สิทธิ์ของการออกแบบอัลกอริทึมคือการค้นหาอัลกอริทึมพหุนามอย่างยิ่งสำหรับการเขียนโปรแกรมเชิงเส้นคืออัลกอริทึมที่มีรันไทม์ถูกล้อมรอบด้วยพหุนามในจำนวนของตัวแปรและข้อ จำกัด และเป็นอิสระจากขนาดของการเป็นตัวแทนของพารามิเตอร์ เลขคณิตต้นทุนต่อหน่วย) การแก้ไขคำถามนี้มีความหมายนอกเหนือจากอัลกอริธึมที่ดีกว่าสำหรับการเขียนโปรแกรมเชิงเส้นหรือไม่? ตัวอย่างเช่นการดำรงอยู่ / ไม่มีอยู่ของอัลกอริทึมดังกล่าวจะมีผลกระทบใด ๆ สำหรับเรขาคณิตหรือทฤษฎีความซับซ้อน? แก้ไข:บางทีฉันควรชี้แจงสิ่งที่ฉันหมายถึงผลที่ตามมา ฉันกำลังมองหาผลกระทบทางคณิตศาสตร์หรือผลลัพธ์เงื่อนไขความหมายที่เป็นที่รู้จักที่จะเป็นจริงในขณะนี้ ตัวอย่างเช่น: "อัลกอริทึมพหุนามสำหรับ LP ในแบบจำลอง BSS จะแยก / ยุบคลาสความซับซ้อนเชิงพีชคณิต FOO และ BAR" หรือ "ถ้าไม่มีอัลกอริทึมพหุนามอย่างยิ่งแล้วมันจะแก้ไขการคาดเดาเกี่ยวกับ polytopes เช่นนี้" ขั้นตอนวิธีการพหุนามอย่างยิ่งสำหรับปัญหา X ซึ่งได้สูตรเป็นแผ่นเสียงจะมีผลที่น่าสนใจblah " การคาดเดาของ Hirsch จะเป็นตัวอย่างที่ดียกเว้นว่าจะใช้เฉพาะถ้าเริมเป็นพหุนาม

6
ตัวเลขจริงระบุไว้ในการคำนวณอย่างไร
นี่อาจเป็นคำถามพื้นฐาน แต่ฉันได้อ่านและพยายามที่จะเข้าใจเอกสารในวิชาต่างๆเช่นการคำนวณดุลยภาพของแนชและการทดสอบความเสื่อมเชิงเส้นและไม่แน่ใจว่าจะระบุจำนวนจริงเป็นข้อมูลเข้าได้อย่างไร ยกตัวอย่างเช่นเมื่อมีการระบุว่า LDT มีขอบเขตพหุนามต่ำกว่าจำนวนจริงจะระบุไว้อย่างไรเมื่อได้รับการปฏิบัติเหมือนเป็นข้อมูลเข้า

1
ความซับซ้อนของการคำนวณเส้นทางที่สั้นที่สุดในระนาบที่มีสิ่งกีดขวางรูปหลายเหลี่ยม
สมมติว่าเราได้รูปหลายเหลี่ยมที่ไม่ปะติดปะต่อกันในระนาบและสองจุดและอยู่นอกรูปหลายเหลี่ยม ปัญหาเส้นทางที่สั้นที่สุดของยุคลิดคือการคำนวณเส้นทางที่สั้นที่สุดของยุคลิดจากถึงที่ไม่ตัดกันภายในของรูปหลายเหลี่ยมใด ๆ สำหรับ concreteness ขอให้เราสมมติว่าพิกัดของและและพิกัดของจุดยอดรูปหลายเหลี่ยมทุกอันเป็นจำนวนเต็มsssเสื้อเสื้อtsssเสื้อเสื้อtsssเสื้อเสื้อt สามารถแก้ไขปัญหานี้ได้ในเวลาพหุนามหรือไม่? เครื่องวัดตำแหน่งทางภูมิศาสตร์ส่วนใหญ่จะบอกว่าใช่แน่นอน: John Hershberger และ Subhash Suriอธิบายถึงอัลกอริทึมที่คำนวณเส้นทางที่สั้นที่สุดของ Euclidean ในเวลาและเวลานี้เหมาะสมที่สุดในแบบจำลองการคำนวณเชิงพีชคณิต น่าเสียดายที่อัลกอริทึมของ Hershberger และ Suri (และอัลกอริธึมที่เกี่ยวข้องเกือบทั้งหมดก่อนและหลัง) ดูเหมือนว่าจะต้องใช้เลขคณิตจริงที่แน่นอนในความหมายที่เข้มงวดดังต่อไปนี้O ( n บันทึกn )O(nเข้าสู่ระบบ⁡n)O(n\log n) โทรหารูปหลายเหลี่ยมที่ถูกต้องถ้าจุดภายในทั้งหมดเป็นจุดยอดของสิ่งกีดขวาง เส้นทางที่สั้นที่สุดของ Euclidean นั้นใช้ได้ ความยาวของเส้นทางที่ถูกต้องคือผลรวมของสแควร์รูทของจำนวนเต็ม ดังนั้นการเปรียบเทียบความยาวของสองเส้นทางที่ถูกต้องต้องเปรียบเทียบสองผลรวมของรากซึ่งเราไม่ทราบว่าจะทำอย่างไรในเวลาพหุนาม ยิ่งไปกว่านั้นดูเหมือนว่าเป็นไปได้อย่างสมบูรณ์ว่าปัญหาที่เกิดขึ้นโดยพลการของผลรวมของสแควร์รูทสามารถลดลงเป็นปัญหาเส้นทางที่สั้นที่สุดของยูคลิด ดังนั้น: มีอัลกอริธึมเวลาพหุนามในการคำนวณเส้นทางที่สั้นที่สุดของ Euclidean หรือไม่? หรือเป็นปัญหา NP-hard? หรือsum-of-ตารางรากแข็ง ? หรืออย่างอื่น? หมายเหตุเล็กน้อย: เส้นทางที่สั้นที่สุดใน (หรือนอก) รูปหลายเหลี่ยมหนึ่งอันสามารถคำนวณได้ในเวลาโดยไม่มีปัญหาเชิงตัวเลขแปลก ๆ โดยใช้อัลกอริทึมช่องทางมาตรฐานอย่างน้อยถ้ามีการระบุสามเหลี่ยมของรูปหลายเหลี่ยมO ( n …

3
การคำนวณ reals: floating point กับ TTE เทียบกับ domain domain vs etc
ปัจจุบันการคำนวณ reals ในภาษายอดนิยมส่วนใหญ่ยังดำเนินการผ่านการดำเนินการจุดลอยตัว ในทางตรงกันข้ามทฤษฎีเช่นประเภทสอง effectivity (TTE) และทฤษฎีโดเมนมีสัญญาการคำนวณ reals ที่แน่นอน เห็นได้ชัดว่าปัญหาของความแม่นยำจุดลอยตัวไม่ได้ลดลงในความเกี่ยวข้องดังนั้นทำไมทฤษฎีเหล่านี้ถึงไม่กลายเป็นกระแสหลักมากขึ้นและทำไมจึงไม่มีการใช้งานที่ชัดเจนมากขึ้นของพวกเขา ตัวอย่างเช่นมีโดเมนของแอปพลิเคชันที่เราไม่สนใจมากเกี่ยวกับข้อผิดพลาดจุดลอยตัวหรือไม่ มีความกังวลที่ซับซ้อนอย่างมากหรือไม่?

5
เป็นไปได้ไหมที่จะทดสอบว่าตัวเลขที่คำนวณได้นั้นเป็นจำนวนตรรกยะหรือจำนวนเต็ม?
เป็นไปได้ไหมที่จะทดสอบอัลกอริธึมว่าจำนวนที่คำนวณได้เป็นจำนวนตรรกยะหรือจำนวนเต็ม? ในคำอื่น ๆ ก็จะมีความเป็นไปได้สำหรับห้องสมุดที่ใช้คำนวณตัวเลขเพื่อให้ฟังก์ชั่นisIntegerหรือisRational? ฉันเดาว่ามันเป็นไปไม่ได้และนี่ก็เกี่ยวข้องกับความจริงที่ว่ามันเป็นไปไม่ได้ที่จะทดสอบว่าตัวเลขสองตัวนั้นเท่ากัน แต่ฉันไม่เห็นวิธีที่จะพิสูจน์มัน แก้ไข: จำนวนที่คำนวณได้ถูกกำหนดโดยฟังก์ชันที่สามารถส่งกลับค่าประมาณด้วยเหตุผลด้วยความแม่นยำ :สำหรับใด ๆ0 รับฟังก์ชั่นดังกล่าวเป็นไปได้หรือไม่ที่จะทดสอบว่าหรือ ?xxxfx(ϵ)fx(ϵ)f_x(\epsilon)xxxϵϵ\epsilon|x−fx(ϵ)|≤ϵ|x−fx(ϵ)|≤ϵ|x - f_x(\epsilon)| \leq \epsilonϵ>0ϵ>0\epsilon > 0x∈Qx∈Qx \in \mathrm{Q}x∈Zx∈Zx \in \mathrm{Z}
18 computability  computing-over-reals  lambda-calculus  graph-theory  co.combinatorics  cc.complexity-theory  reference-request  graph-theory  proofs  np-complete  cc.complexity-theory  machine-learning  boolean-functions  combinatory-logic  boolean-formulas  reference-request  approximation-algorithms  optimization  cc.complexity-theory  co.combinatorics  permutations  cc.complexity-theory  cc.complexity-theory  ai.artificial-intel  p-vs-np  relativization  co.combinatorics  permutations  ds.algorithms  algebra  automata-theory  dfa  lo.logic  temporal-logic  linear-temporal-logic  circuit-complexity  lower-bounds  permanent  arithmetic-circuits  determinant  dc.parallel-comp  asymptotics  ds.algorithms  graph-theory  planar-graphs  physics  max-flow  max-flow-min-cut  fl.formal-languages  automata-theory  finite-model-theory  dfa  language-design  soft-question  machine-learning  linear-algebra  db.databases  arithmetic-circuits  ds.algorithms  machine-learning  ds.data-structures  tree  soft-question  security  project-topic  approximation-algorithms  linear-programming  primal-dual  reference-request  graph-theory  graph-algorithms  cr.crypto-security  quantum-computing  gr.group-theory  graph-theory  time-complexity  lower-bounds  matrices  sorting  asymptotics  approximation-algorithms  linear-algebra  matrices  max-cut  graph-theory  graph-algorithms  time-complexity  circuit-complexity  regular-language  graph-algorithms  approximation-algorithms  set-cover  clique  graph-theory  graph-algorithms  approximation-algorithms  clustering  partition-problem  time-complexity  turing-machines  term-rewriting-systems  cc.complexity-theory  time-complexity  nondeterminism 

2
ความซับซ้อนของการคำนวณการแปลงฟูริเยร์แบบแยก?
อะไรคือความซับซ้อน (บน RAM จำนวนเต็มมาตรฐาน) ของการคำนวณการแปลงฟูริเยร์แบบแยกแบบไม่ต่อเนื่องของเวกเตอร์จำนวนจำนวนเต็ม?nnn คลาสสิกอัลกอริทึมสำหรับการแปลงฟูริเยร์ได้อย่างรวดเร็ว , ไม่เหมาะสม[1]ประกอบกับคูลลีย์และทูกีมักจะอธิบายว่าเป็นทำงานในเวลา แต่ที่สำคัญที่สุดของการดำเนินการทางคณิตศาสตร์ดำเนินการในขั้นตอนวิธีนี้เริ่มต้นด้วยการที่ซับซ้อนn th รากของความสามัคคีซึ่งเป็น (ส่วนใหญ่n ) เหตุผลการประเมินผลที่แน่นอนดังนั้นในเวลาคงไม่สมเหตุสมผล ปัญหาเดียวกันเกิดขึ้นกับอัลกอริธึมไร้เดียงสาO ( n 2 ) - (คูณด้วยเมทริกซ์ Vandermonde ของรากที่ซับซ้อนของความสามัคคี)O ( n บันทึกn )O(nlog⁡n)O(n \log n)nnnnnnO ( n2)O(n2)O(n^2) ยังไม่ชัดเจนว่าจะแสดงผลลัพธ์ของ DFT ได้อย่างไร (ในรูปแบบที่มีประโยชน์ใด ๆ ) กล่าวอีกอย่างหนึ่งก็ไม่ชัดเจนว่าการคำนวณ DFT นั้นเป็นไปได้จริง ๆ ! สมมติว่าเราต้องการเพียงความแม่นยำบิตในแต่ละค่าผลลัพธ์ ความซับซ้อนของการคำนวณการแปลงฟูริเยร์แบบแยกเป็นฟังก์ชันของnและbคืออะไร? (เพื่อความเป็นรูปธรรมรู้สึกอิสระที่จะสมมติว่าnคือพลังของ2 )ขbbnnnขbbnnn222 หรือทุกตัวอย่างของ "FFT" ในวรรณคดีจริง ๆ …

1
คณิตศาสตร์ของ Reals สามารถนำไปใช้กับการคำนวณที่นับได้ในระดับใด
มีทฤษฎีบททั่วไปที่จะระบุด้วยการฆ่าเชื้อที่เหมาะสมว่าผลลัพธ์ที่รู้จักกันมากที่สุดเกี่ยวกับการใช้ตัวเลขจริงสามารถนำมาใช้จริง ๆ เมื่อพิจารณาเฉพาะ reals ที่คำนวณได้? หรือมีลักษณะที่เหมาะสมของผลลัพธ์ที่ยังคงใช้ได้เมื่อพิจารณาเฉพาะ reals ที่คำนวณได้? คำถามด้านคือว่าผลลัพธ์ที่เกี่ยวข้องกับ reals ที่คำนวณได้สามารถพิสูจน์ได้โดยไม่ต้องพิจารณาจริงทั้งหมดหรืออะไรที่ไม่คำนวณ ฉันกำลังคิดถึงแคลคูลัสและการวิเคราะห์ทางคณิตศาสตร์โดยเฉพาะ แต่คำถามของฉันไม่ได้ จำกัด อยู่แค่นั้น ที่จริงแล้วฉันคิดว่ามีลำดับชั้นของการคำนวณที่สอดคล้องกับลำดับชั้นของทัวริง (ถูกต้องหรือไม่) จากนั้นยิ่งใจลอยมีทฤษฎีนามธรรมของจริง (ฉันไม่แน่ใจว่าสิ่งที่คำศัพท์ควรจะ) ซึ่งจำนวนของผลลัพธ์ที่สามารถพิสูจน์ได้ว่าจะนำไปใช้กับจำนวนจริงแบบดั้งเดิม แต่ยัง reals คำนวณและ ถึงระดับใด ๆ ของลำดับชั้นของทัวริงของ reals ที่คำนวณได้ถ้ามี จากนั้นคำถามของฉันอาจจะกล่าวได้ว่า: มีลักษณะของผลลัพธ์ที่จะนำไปใช้ในทฤษฎีนามธรรมของ reals เมื่อพวกเขาได้รับการพิสูจน์สำหรับ reals แบบดั้งเดิม และสามารถพิสูจน์ผลลัพธ์เหล่านี้ได้โดยตรงในทฤษฎีนามธรรมโดยไม่คำนึงถึง reals ดั้งเดิม ฉันสนใจที่จะเข้าใจว่าทฤษฎีเหล่านี้แตกต่างกันอย่างไรและเมื่อไหร่ ป.ล. ฉันไม่ทราบว่าจะตอบคำถามนี้ได้ที่ไหน ฉันตระหนักว่าคณิตศาสตร์เกี่ยวกับ reals ได้รับการสรุปโดยทั่วไปกับโทโพโลยี ดังนั้นอาจเป็นได้ว่าคำตอบสำหรับคำถามของฉันหรือบางส่วนนั้นสามารถพบได้ที่นั่น แต่อาจมีมากกว่านั้น

2
ความซับซ้อนของเวลาของอัลกอรึทึมของ Bellman-Held-Karp สำหรับ TSP ใช้เวลา 2
คำถามที่ผ่านมากล่าวถึงขั้นตอนวิธีการเขียนโปรแกรมแบบไดนามิกตอนนี้คลาสสิกสำหรับ TSP เนื่องจากอิสระเพื่อยามและถือคาร์พ อัลกอริทึมเป็นสากลรายงานให้ทำงานในO(2nn2)O(2nn2)O(2^n n^2)เวลา อย่างไรก็ตามในฐานะที่เป็นหนึ่งในนักเรียนของฉันเมื่อเร็ว ๆ นี้ชี้ให้เห็นเวลาทำงานนี้อาจต้องใช้แบบจำลองการคำนวณที่ทรงพลังอย่างไม่มีเหตุผล นี่คือคำอธิบายสั้น ๆ ของอัลกอริทึม การป้อนข้อมูลประกอบด้วยกำกับกราฟG=(V,E)G=(V,E)G=(V,E)กับnnnจุดและที่ไม่ใช่เชิงลบฟังก์ชั่นความยาวℓ:E→R+ℓ:E→R+\ell\colon E\to\mathbb{R}^+ + สำหรับจุดยอดsssและtttใด ๆ และเซตย่อยXXXของจุดยอดที่แยกsssและtttให้L(s,X,t)L(s,X,t)L(s,X,t)แสดงความยาวของเส้นทางแฮมิลโตเนียนที่สั้นที่สุดจากsssถึงtttใน subgraph เหนี่ยวนำให้เกิดG[X∪{s,t}]G[X∪{s,t}]G[X\cup\{s,t\}] ] อัลกอรึทึมของ Bellman-Held-Karp นั้นมีพื้นฐานมาจากการเกิดซ้ำดังต่อไปนี้ (หรือในฐานะนักเศรษฐศาสตร์และนักทฤษฎีควบคุมที่เรียกมันว่า "สมการของเบลแมน"): L(s,X,t)={ℓ(s,t)minv∈X (L(s,X∖{v},v)+ℓ(v,t))if X=∅otherwiseL(s,X,t)={ℓ(s,t)if X=∅minv∈X (L(s,X∖{v},v)+ℓ(v,t))otherwise L(s,X,t) = \begin{cases} \ell(s,t) & \text{if $X = \varnothing_{\strut} $} \\ \min_{v\in X}~ \big(L(s, X\setminus\lbrace v\rbrace, v) + \ell(v,t)\big) & …

1
ความสมบูรณ์ของ NP มากกว่า reals
ฉันกำลังศึกษารูปแบบการคำนวณ BSS เมื่อเร็ว ๆ นี้ (เช่นความซับซ้อนและการคำนวณจริงเช่น Blum, Cucker, Shub, Smale) สำหรับ reals , มันแสดงให้เห็นว่า, เนื่องจากระบบของพหุนามประกอบด้วยf 1 , ⋯ , f m ∈ R [ x 1 , ⋯ , x n ] , การมีอยู่ของศูนย์คือN P R - สมบูรณ์ อย่างไรก็ตามฉันสงสัยว่าถ้าfเหล่านั้นเป็นพหุนามมีค่าสัมประสิทธิ์จำนวนเต็มเท่านั้นคือf 1 , ⋯ , f m ∈ Z [ x 1 …

2
Euclidean TSP ใน NP และความซับซ้อนของรากที่สอง
ในบันทึกการบรรยายนี้โดย Ola Svensson: http://theory.epfl.ch/osven/courses/Approx13/Notes/lecture4-5.pdfมีการกล่าวกันว่าเราไม่รู้ว่า Euclidean TSP อยู่ใน NP: สาเหตุที่เราไม่รู้วิธีคำนวณรากที่สองอย่างมีประสิทธิภาพ ในทางตรงกันข้ามมีกระดาษนี้โดย Papadimitriou: http://www.sciencedirect.com/science/article/pii/0304397577900123บอกว่ามันเป็น NP- สมบูรณ์ซึ่งหมายความว่ามันเป็นใน NP แม้ว่าเขาจะไม่ได้พิสูจน์มันในกระดาษ แต่ฉันคิดว่าเขาคิดว่าการเป็นสมาชิกในเรื่องไร้สาระเป็นเรื่องปกติ ฉันสับสนกับสิ่งนี้ สุจริตการกล่าวอ้างว่าเราไม่รู้ว่า Euclidian TSP อยู่ใน NP ทำให้ฉันตกใจเพราะฉันเพิ่งคิดว่ามันไม่สำคัญ - การทัวร์ TSP เป็นหนังสือรับรองเราสามารถตรวจสอบได้อย่างถูกต้องว่าเป็นทัวร์ที่ถูกต้อง แต่ปัญหาคือสามารถมีรากที่สองได้บ้าง ดังนั้นการบรรยายโดยทั่วไปอ้างว่าเราไม่สามารถในเวลาพหุนามแก้ปัญหาต่อไปนี้: ได้รับหมายเลขเหตุผลตัดสินใจว่าq1,…,qn,A∈Qq1,…,qn,A∈Qq_1,\ldots,q_n,A\in\mathbb{Q}q1−−√+⋯+qn−−√≤Aq1+⋯+qn≤A\sqrt{q_1}+\cdots+\sqrt{q_n}\leq A คำถามที่ 1:เรารู้อะไรเกี่ยวกับปัญหานี้ สิ่งนี้มีความเรียบง่ายดังต่อไปนี้ซึ่งฉันไม่สามารถหาได้: คำถามที่ 2:สิ่งนี้สามารถลดลงได้ในกรณีพิเศษหรือไม่เมื่อนี่เป็นกรณีพิเศษเวลาพหุนามแก้ได้หรือไม่?n=1n=1n=1 ฉันคิดถึงเรื่องนี้ซักพักแล้ว เราต้องการความซับซ้อนของเวลาพหุนามที่เกี่ยวกับจำนวนบิตของอินพุตเช่นไม่ใช่ขนาดของตัวเลข เราสามารถหาผลรวมกับจำนวนทศนิยมแบบพหุนามได้อย่างง่ายดาย เพื่อให้ได้กรณีที่ไม่ดีเราต้องการอินสแตนซ์ของสำหรับเช่นนั้นสำหรับพหุนามทุกตัวมีจำนวนเต็มที่และเห็นด้วยกับตัวเลขตัวแรกของ การขยายทศนิยมq1,k,…,qn,k,Ak∈Qq1,k,…,qn,k,Ak∈Qq_{1,k},\ldots,q_{n,k},A_k\in\mathbb{Q}k=1,2,…k=1,2,…k=1,2,\ldotspppkkkq1,k−−−√+⋯+qn,k−−−√q1,k+⋯+qn,k\sqrt{q_{1,k}}+\cdots+\sqrt{q_{n,k}}AkAkA_kp(input-size)p(input-size)p(\text{input-size}) คำถามที่ 3:มีตัวอย่างของจำนวนที่มีเหตุผลหรือไม่? แต่คืออะไร ขึ้นอยู่กับวิธีการแสดงจำนวนตรรกยะ! ตอนนี้ฉันอยากรู้เกี่ยวกับเรื่องนี้:input-sizeinput-size\text{input-size} คำถามที่ 4:อัลกอริทึมมีความสำคัญหรือไม่หากจำนวนตรรกยะให้เป็นอัตราส่วนของจำนวนเต็มสองจำนวน (เช่น …

2
วิธีการตัดสินความหมายของความซับซ้อนของการคำนวณของ reals เป็นธรรมชาติหรือเหมาะสม?
ดังที่เราทราบความหมายของความซับซ้อนในการคำนวณของอัลกอริธึมแทบจะไม่มีข้อโต้แย้ง แต่ความหมายของความซับซ้อนในการคำนวณของ reals หรือโมเดลการคำนวณเหนือ reals ไม่ได้อยู่ในกรณีเช่นนี้ เรารู้รูปแบบและแบบจำลองของ Blum and Smales ในหนังสือ Comp วิเคราะห์ Analysis และดูเหมือนว่ารูปแบบในการวิเคราะห์ความสอดคล้องมีความสอดคล้องกับรูปแบบคลาสสิก แต่คำจำกัดความของความซับซ้อนในการคำนวณของ reals ไม่สามารถย้ายไปเป็นรูปแบบคลาสสิก วิธีการตัดสินความหมายของความซับซ้อนของการคำนวณของ reals เป็นธรรมชาติหรือเหมาะสม? และวิธีการปลูกนิยามของความซับซ้อนในการคำนวณของ reals เป็นโมเดลคลาสสิก?

1
Berman-Hartmanis Isomorphism สำหรับ NP
การใช้โมเดล real-RAM / BSS ทำให้เรามีคลาส NP , (โดยที่BSSเป็นแบบจำลอง Blum-Shub-Smale ของคอมพิวเตอร์ที่มีการทำงานมากกว่า reals) เรามี NPปัญหาที่สมบูรณ์ ดังนั้นคำถามคือมีการคาดคะเนของ Berman Hartmanis สำหรับคลาส NPหรือไม่? แน่นอนคำถามที่ถูกวางที่นี่ขึ้นอยู่กับรุ่น - ในคำอื่น ๆ ตามคำจำกัดความของ NPใช้แบบจำลอง BSS ทำทุกปัญหา NP - ปัญหาที่สมบูรณ์มี โครงสร้างเดียวกันโดยใช้แบบจำลอง BSS (ซึ่งใกล้เคียงกับการคาดคะเนของ Berman-Hartmanis สำหรับ NP มากกว่า reals)?RR_{\mathbb{R}}RR_{\mathbb{R}}RR_{\mathbb{R}}RR_\mathbb{R}RR_{\mathbb{R}}

1
อ้างอิงถึงความไม่แน่นอนของโมดูลัสของความต่อเนื่องของฟังก์ชันใน PCF
ใครสามารถชี้ให้ฉันดูการอ้างอิงสำหรับความไม่แน่นอนของโมดูลัสการทำงานต่อเนื่องใน PCF \newcommand{\N}{\mathbb{N}} \newcommand{\bool}{\mathsf{bool}} Andrej Bauer ได้เขียนโพสต์บล็อกที่ดีมากในการสำรวจปัญหาบางอย่างในรายละเอียดเพิ่มเติม แต่ฉันจะสรุปเพียงเล็กน้อยของโพสต์ของเขาเพื่อให้ความรู้เกี่ยวกับคำถามนี้ Baire พื้นที่BBBเป็นชุดของลำดับจำนวนธรรมชาติหรือเท่าชุดของฟังก์ชั่นจากธรรมชาติเพื่อธรรมชาติN→NN→N\N \to \N n สำหรับคำถามนี้เราจะ จำกัด ความสนใจของเราเฉพาะสตรีมที่คำนวณได้เท่านั้น ตอนนี้ฟังก์ชั่นf:B→boolf:B→boolf : B \to \boolนั้นต่อเนื่องหากทุก ๆxs∈Bxs∈Bxs \in Bค่าของf(xs)f(xs)f(xs)ขึ้นอยู่กับจำนวนที่แน่นอนขององค์ประกอบของxsxsxsและมันต่อเนื่องได้ถ้าเราสามารถคำนวณบน จำกัด จำนวนองค์ประกอบของxsxsxsที่ต้องการ ในการคำนวณบางรุ่นมันเป็นไปได้ที่จะเขียนโปรแกรม modulus:(B→bool)→B→Nmodulus:(B→bool)→B→N\mathsf{modulus} : (B \to \bool) \to B \to \Nซึ่งรับฟังก์ชั่นคำนวณบนพื้นที่ Baire และองค์ประกอบของพื้นที่ Baire และคืนขอบเขตบนจำนวนองค์ประกอบของสตรีม เคล็ดลับหนึ่งสำหรับการนำสิ่งนี้ไปใช้คือการใช้ที่จัดเก็บในตัวเครื่องเพื่อบันทึกดัชนีสูงสุดลงในสตรีมที่เห็น: let modulus f xs = let r = ref …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.